首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ambiphilic nature of geometrically constrained Group 15 complexes bearing the N,N‐bis(3,5‐di‐tert‐butyl‐2‐phenolate)amide pincer ligand (ONO3?) is explored. Despite their differing reactivity towards nucleophilic substrates with polarised element–hydrogen bonds (e.g., NH3), both the phosphorus(III), P(ONO) ( 1 a ), and arsenic(III), As(ONO) ( 1 b ), compounds exhibit similar reactivity towards charged nucleophiles and electrophiles. Reactions of 1 a and 1 b with KOtBu or KNPh2 afford anionic complexes in which the nucleophilic anion associates with the pnictogen centre ([(tBuO)Pn(ONO)]? (Pn=P ( 2 a ), As ( 2 b )) and [(Ph2N)Pn(ONO)]? (Pn=P ( 3 a ), As ( 3 b )). Compound 2 a can subsequently be reacted with a proton source or benzylbromide to afford the phosphorus(V) compounds (tBuO)HP(ONO) ( 4 a ) and (tBuO)BzP(ONO) ( 5 a ), respectively, whereas analogous arsenic(V) compounds are inaccessible. Electrophilic substrates, such as HOTf and MeOTf, preferentially associate with the nitrogen atom of the ligand backbone of both 1 a and 1 b , giving rise to cationic species that can be rationalised as either ammonium salts or as amine‐stabilised phosphenium or arsenium complexes ([Pn{ON(H)O}]+ (Pn=P ( 6 a ), As ( 6 b )) and [Pn{ON(Me)O}]+ (Pn=P ( 7 a ), As ( 7 b )). Reaction of 1 a with an acid bearing a nucleophilic counteranion (such as HCl) gives rise to a phosphorus(V) compound HPCl(ONO) ( 8 a ), whereas the analogous reaction with 1 b results in the addition of HCl across one of the As?O bonds to afford ClAs{(H)ONO} ( 8 b ). Functionalisation at both the pnictogen centre and the ligand backbone is also possible by reaction of 7 a / 7 b with KOtBu, which affords the neutral species (tBuO)Pn{ON(Me)O} (Pn=P ( 9 a ), As ( 9 b )). The ambiphilic reactivity of these geometrically constrained complexes allows some insight into the mechanism of reactivity of 1 a towards small molecules, such as ammonia and water.  相似文献   

2.
Alkali metal organometallic complexes (containing C–metal bonds) and the frequently structrually related alkali metal amides and alkoxides have been investigated extensively both in the solid state and in solution in the past two decades. However, until recently, the related complexes containing the heavier metallic and semi-metallic p block elements and the alkali and alkaline earth metals had rarely been studied in their own right. Recent solid-state structural studies have illustrated the immense structural diversity and bonding modes to be found within these species. One of the principal focuses of recent studies has been complexes containing organometallic anions of p block metals (e.g., triorganostannates, containing R3Sn?) in which metal–metal bonds occur between the heavy p block metal and the alkali or alkaline earth metal and the investigation of the nature of this bonding. The development of new synthetic routes has also allowed the preparation of a variety of anionic ligands with p block metal centers which promise new opportunities in coordination chemistry. In addition, the synthesis of a family of homologous anionic π complexes has given a fresh direction in the chemistry of p block metal metallocene complexes.  相似文献   

3.
Free borylenes (R–B:) have only been spectroscopically characterized in the gas phase or in matrices at very low temperatures. However, in recent years, a few mono‐ and bis(Lewis base)‐stabilized borylenes have been isolated. In both of these compounds the boron atom is in the formal oxidation state +I which contrasts with classical organoboron derivatives wherein the element is in the +III oxidation state. Mono(Lewis base)‐stabilized borylenes are isoelectronic with singlet carbenes, and their reactivity mimics to some extent that of transition metals. They can activate small molecules, such as H2, and coordinate an additional ligand; in other words, they are boron metallomimics. Bis(Lewis base)borylene adducts are isoelectronic with amines and phosphines. In contrast to boranes, which act as electron acceptors and thus Lewis acids, they are electron‐rich and act as ligands for transition metals.  相似文献   

4.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   

5.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   

6.
The coordination chemistry of metalated container molecules is currently attracting much interest, because the properties of such compounds are often different from those of their constituent components. By adjusting the size and form of the binding cavity it is often possible to coordinate coligands in unusual coordination modes, to activate and transform small molecules, or to stabilize reactive intermediates. Such compounds also allow for an interplay of molecular recognition and transition‐metal catalysis, and for the construction of more effective enzyme mimics. Consequently, a number of research groups are involved in the development of new supporting ligands that create confined environments about active metal coordination sites. This research report briefly reviews recent progress in this field including the results of my own group. It is shown that N‐functionalized derivatives of Robson‐type macrocyclic hexaaza‐dithiophenolate ligands form bioctahedral transition metal complexes of the type [(LR)M2(μ‐L′)]+ (M = Mn, Fe, Co, Ni, Zn) with an overall calixarene‐like structure. These complexes are amongst the first prototypes for polynuclear complexes with well defined binding cavities. Since the active coordination site L′ is accessible for a wide range of exogenous coligands, the [(LR)M2(μ‐L′)] complexes exhibit a rich coordination chemistry. It is demonstrated that the presence of the binding cavity influences many properties of the binuclear [(LR)MII2]2+ complex fragments, including color, molecular and electronic structure, hydrogen bonding interactions, redox potential, complex stability, and reactivity. The unusual properties of the complexes can be traced back to complementary host‐guest interactions and the distinct size and form of the binding pocket of the [(LMe)M2]2+ fragments.  相似文献   

7.
Anionic two‐coordinate complexes of first‐row transition‐metal(I) centres are rare molecules that are expected to reveal new magnetic properties and reactivity. Recently, we demonstrated that a N(SiMe3)2? ligand set, which is unable to prevent dimerisation or extraneous ligand coordination at the +2 oxidation state of iron, was nonetheless able to stabilise anionic two‐coordinate FeI complexes even in the presence of a Lewis base. We now report analogous CrI and CoI complexes with exclusively this amido ligand and the isolation of a [MnI{N(SiMe3)2}2]22? dimer that features a Mn?Mn bond. Additionally, by increasing the steric hindrance of the ligand set, the two‐coordinate complex [MnI{N(Dipp)(SiMe3)}2]? was isolated (Dipp=2,6‐iPr2‐C6H3). Characterisation of these compounds by using X‐ray crystallography, NMR spectroscopy, and magnetic susceptibility measurements is provided along with ligand‐field analysis based on CASSCF/NEVPT2 ab initio calculations.  相似文献   

8.
The syntheses of salts containing ligand‐stabilized Ph3Sb2+ and Ph3Bi2+ dications have been realized by in situ formation of Ph3Pn(OTf)2 (Pn=Sb or Bi) and subsequent reaction with OPPh3, dmap and bipy. The solid‐state structures demonstrate diversity imposed by the steric demands and nature of the ligands. The synthetic method has the potential for broad application enabling widespread development of the coordination chemistry for PnV acceptors.  相似文献   

9.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

10.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

11.
Heteronuclear transition‐metal–main‐group‐element carbonyl complexes of AsFe(CO)3?, SbFe(CO)3?, and BiFe(CO)3? were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass‐selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3?. Chemical bonding analyses on the whole series of AFe(CO)3? (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp–p) type of transition‐metal–main‐group‐element multiple bonding. The σ‐type three‐orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3? (A=As, Sb, Bi) complexes.  相似文献   

12.
The bis(phosphino)borate ligand class is used as an anionic anchor to stabilize reactive, low coordinate arsenic centers. The neutral, zwitterionic AsI species, 2 , is formed very cleanly, and isolated in good yields using cyclohexene as a halogen scavenger. The uniqueness of this heterocyclic AsI compound is on display with the coordination to Group 6 metal centers, ( 2 M(CO)5 ; M=Cr, Mo, W). The arsenic? metal bond lengths are longer than the related AsPh3 complexes suggesting that compound 2 is a weak sigma donor. The metal complexes reveal a trigonal pyramidal arsenic atom, which provides the first experimental evidence for the presence of two “lone pairs” of electrons on the AsI center. When more flexible and more electron‐donating isopropyl substituents were used, an intermediate (compound 5 ) in the formation of low coordinate pnictogen compounds was crystallographically characterized. This structure, formally a base‐stabilized dichloroarsenium cation, provides an alternative mechanistic proposal to the one described in the literature.  相似文献   

13.
The coordination chemistry of the doubly base‐stabilised diborane(4), [HB(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido‐[1,2‐a]pyrimidinate), was extended by the synthesis of new late transition‐metal complexes containing CuI and RhI fragments. A detailed experimental study was conducted and quantum‐chemical calculations on the metal–ligand bonding interactions for [HB(hpp)]2 complexes of Group 6, 9, 11 and 12 metals revealed the dominant B? H? M interactions in the case of early transition‐metal fragments, whereas the B? B? M bonding prevails in the case of the late d‐block compounds. These findings support the experimental results as reflected by the IR and NMR spectroscopic parameters of the investigated compounds. DFT calculations on [MeB(hpp)]2 and model reactions between [B2H4 ? 2NMe3] and [Rh(μ‐Cl)(C2H4)2] showed that the bicyclic guanidinate allows in principle for an oxidative addition of the B? B bond. However, the formation of σ‐complexes is thermodynamically favoured. The results point to the selective B? H or B? B bond‐activation of diborane compounds by complexation, depending on the chosen transition‐metal fragment.  相似文献   

14.
Actinide based metal–organic frameworks (MOFs) are unique not only because compared to the transition‐metal and lanthanide systems they are substantially less explored, but also owing to the uniqueness of actinide ions in bonding and coordination. Now a 3D thorium–organic framework ( SCU‐11 ) contains a series of cages with an effective size of ca. 21×24 Å. Th4+ in SCU‐11 is 10‐coordinate with a bicapped square prism coordination geometry, which has never been documented for any metal cation complexes. The bicapped position is occupied by two coordinated water molecules that can be removed to afford a very unique open Th4+ site, confirmed by X‐ray diffraction, color change, thermogravimetry, and spectroscopy. The degassed phase ( SCU‐11‐A ) exhibits a Brunauer–Emmett–Teller surface area of 1272 m2 g?1, one of the highest values among reported actinide materials, enabling it to sufficiently retain water vapor, Kr, and Xe with uptake capacities of 234 cm3 g?1, 0.77 mmol g?1, 3.17 mmol g?1, respectively, and a Xe/Kr selectivity of 5.7.  相似文献   

15.
Quantum‐chemical calculations using DFT and ab initio methods have been carried out for fourteen divalent carbon(0) compounds (carbones), in which the bonding situation at the two‐coordinate carbon atom can be described in terms of donor–acceptor interactions L→C←L. The charge‐ and energy‐decomposition analysis of the electronic structure of compounds 1 – 10 reveals divalent carbon(0) character in different degrees for all molecules. Carbone‐type bonding L→C←L is particularly strong for the carbodicarbenes 1 and 2 , for the “bent allenes” 3 a , 3 b , 4 a , and 4 b , and for the carbocarbenephosphoranes 7 a , 7 b , and 7 c . The last‐named molecules have very large first and large second proton affinities. They also bind two BH3 ligands with very high bond energies, which are large enough that the bis‐adducts should be isolable in a condensed phase. The second proton affinities of the complexes 5 , 6 , and 8 – 10 bearing CO or N2 as ligand are significantly lower than those of the other molecules. However, they give stable complexes with two BH3 ligands and thus are twofold Lewis bases. The calculated data thus identify 1 – 10 as carbones L→C←L in which the carbon atom has two electron pairs. The chemistry of carbones is different from that of carbenes because divalent carbon(0) compounds CL2 are π donors and thus may serve as double Lewis bases, while divalent carbon(II) compounds are π acceptors. The theoretical results point toward new directions for experimental research in the field of low‐coordinate carbon compounds.  相似文献   

16.
Boron(III) cations are widely used as highly Lewis acidic reagents in synthetic chemistry. In contrast, boron(II) cations are extremely rare and their chemistry almost completely unknown. They are both Lewis acids and electron donors, properties that are commonly associated with catalytically active late‐transition‐metal complexes. This double reactivity pattern ensures a rich and diverse chemistry. Herein we report the facile synthesis of several new boron(II) cations starting with a special diborane with two easily exchangeable triflate substituents. By increasing the π‐acceptor character of the neutral σ‐donor reaction partners, first reactions were developed in which the combined Lewis acidity and electron‐donor properties of boron(II) cations are applied for the reduction of organic molecules. The results of our study pave the way for applications of these unusual compounds in synthetic chemistry.  相似文献   

17.
Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six‐coordinate silicon(IV ) complexes 4 (previous work) and 8 , respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six‐coordinate silicon(IV ) complex 10 , the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2 , however, yields the five‐coordinate silicon(IV ) complex 13 with a carbon‐bound CS22? ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV ) complexes 5 and 6 with CO2 also affords the six‐coordinate carbonatosilicon(IV ) complexes 4 and 8 , respectively.  相似文献   

18.
Cobaltocenium carboxylate is an unusual betaine that functions as a formally neutral carboxylate ligand with late transition metal centers comprising Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Rh+. Structurally, a rich coordination chemistry is observed – from simple monomeric homoleptic complexes to heteroleptic dimeric, trimeric, and polymeric compounds, as shown by X‐ray diffraction of 11 compounds. Chemically, thermal decarboxylation was investigated aiming at the formation of cobaltocenium‐carbene transition metal complexes, in analogy to such chemistry of imidazolium carboxylate betaines. Cytotoxicity studies of cobaltocenium carboxylate transition metal complexes were performed to evaluate the medicinal bioorganometallic potential of these compounds. While cobaltocenium carboxylate was inactive, its complexes with Ag+, Cd2+, and Hg2+ triggered significant cytotoxic effects.  相似文献   

19.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

20.
By carefully selecting an existing synthetic strategy and suitable coordination subunits, constructing desired coordination geometries is no longer that difficult to accomplish. Herein, a new strategy to construct a series of unprecedented structures by using conjugated Cp*Rh‐based complex BN‐OTf (Cp*=η5‐C5Me5) as the building block is proposed. DFT calculations revealed extensive delocalized π bonds in the subunit. With BN‐OTf , rectangular macrocycles TN‐bpy and TN‐bpe were controllably synthesized. Single‐crystal XRD studies confirmed one‐dimensional stacking channels for the tetranuclear structure. Notably, the starting ligand imidazole‐4,5‐dicarboxylate was found to act not only as a tetradentate but also as a hexadentate ligand that can coordinate to further metal ions. Subsequently, [4 Rh+1 M] heterometallic complexes HMZ (M=Cu and Zn) were accessed by chelating borderline hard/soft Lewis acids. With TN‐Linker or HMZ , two routes resulted in the [8 Rh+2 M] heterometallic cages HMC (M=Cu and Zn) with excellent crystallinity and stability. Surprisingly, when BN‐OTf bonded to rhodium itself, triangular prisms TP‐Linker were obtained with high solubility after being linked by bipyridine linkers. Both the X‐ray structure and 1H NMR spectrum confirmed the novel isomerization of the triangular structures. All of the compounds were obtained in high yields and were fully characterized by 1H NMR spectroscopy, elemental analysis, IR spectroscopy, and in most cases single‐crystal X‐ray structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号