首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorination of various HPLC fractions of C96 with a mixture of VCl4 and SbCl5 at 340–360 °C and single‐crystal X‐ray diffraction study of the products led to the identification of three new IPR isomers of C96. The C96(175) isomer forms a stable chloride, C96(175)Cl20, while chlorides of two other new isomers, C96(114) and C96(80), undergo cage shrinkage yielding C94(NC1)Cl28 and C96(NC2)Cl32 with non‐classical (NC) cages. These two NC chlorides contain, respectively, one and two heptagons flanked by pairs of fused pentagons and are stabilized by chlorine attachment to the emerging pentagon–pentagon junctions. Thus, the number of the experimentally confirmed C96 isomers has reached nine, which corroborates the empirical rule that the C6n fullerenes exhibit particularly rich isomerism.  相似文献   

2.
High‐temperature chlorination of C100 fullerene followed by X‐ray structure determination of the chloro derivatives enabled the identification of three isomers of C100 from the fullerene soot, specifically numbers 18, 425, and 417, which obey the isolated pentagon rule (IPR). Among them, isomers C1‐C100(425) and C2‐C100(18) afforded C1‐C100(425)Cl22 and C2‐C100(18)Cl28/30 compounds, respectively, which retain their IPR cage connectivities. In contrast, isomer C2v‐C100(417) gives Cs‐C100(417)Cl28 which undergoes a skeletal transformation by the loss of a C2 fragment, resulting in the formation of a nonclassical (NC) C1‐C98(NC)Cl26 with a heptagon in the carbon cage. Most probably, two nonclassical C1‐C100(NC)Cl18/22 chloro derivatives originate from the IPR isomer C1‐C100(382), although both C1‐C100(344) and even nonclassical C1‐C100(NC) can be also considered as the starting isomers.  相似文献   

3.
Like C60, C70 is one of the most representative fullerenes in fullerene science. Even though there are 8149 C70 isomers, only two of them have been found before: the conventional D5h and an isolated pentagon rule (IPR)‐violating C2v(7854). Through the use of quantum chemical methods, we report a new unconventional C70 isomer, C2(7892), which survives in the form of dimetallic sulfide endohedral fullerene Sc2S@C70. Compared with the IPR‐obeying C70 and the C2v(7854) fullerene with three pairs of pentagon adjacencies, the C2(7892) cage violates the isolated pentagon rule and has two pairs of pentagon adjacencies. In Sc2S@C2(7892)‐C70, two scandium atoms coordinate with two pentalene motifs, respectively, presenting two equivalent Sc? S bonds. The strong coordination interaction, along with the electron transfer from the Sc2S cluster to the fullerene cage, results in the stabilization of the non‐IPR endohedral fullerene. The electronic structure of Sc2S@C70 can be formally described as [Sc2S]4+@[C70]4?; however, a substantial overlap between the metallic orbitals and cage orbitals has also been found. Electrochemical properties and electronic absorption, infrared, and 13C NMR spectra of Sc2S@C70 have been calculated theoretically.  相似文献   

4.
The most‐stable #916C56 carbon cage has been captured by in situ chlorination during the radio frequency furnace process. The resulting exohedral #916C56Cl12 was separated and unambiguously characterized by single crystal X‐ray structure determination. The discovery of #916C56 provides evidence for a thermodynamically controlled mechanism of fullerene formation, and on the other hand shows that the in situ chlorination does not remarkably influence the fullerene formation itself but just results in the capture of preformed cages. A detailed analysis of the chlorination pattern of #916C56Cl12 reveals the main factors controlling the reactivity of non‐IPR fullerenes. A high degree of aromatization was observed in the remaining π‐system by considering geometric criteria and nucleus‐independent chemical‐shift analysis (NICS). Along with the well‐known stabilization of pentagon pentagon junctions during chlorination, the formation of aromatic islands plays an important role in the stabilization of the fullerene cage and also in the determination of the chlorination pattern. Based on these empirical rules, the preferable addition patterns for non‐IPR fullerene cages can be easily predicted.  相似文献   

5.
High‐temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X‐ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2‐C98(248) and rather unstable C1‐C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.  相似文献   

6.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

7.
The most abundant fullerenes, C60 and C70, and all the pure carbon fullerenes larger than C70, follow the isolated‐pentagon rule (IPR). Non‐IPR fullerenes containing adjacent pentagons (APs) have been stabilized experimentally in cases where, according to Euler’s theorem, it is topologically impossible to isolate all the pentagons from each other. Surprisingly, recent experiments have shown that a few endohedral fullerenes, for which IPR structures are possible, are stabilized in non‐IPR cages. We show that, apart from strain, the physical property that governs the relative stabilities of fullerenes is the charge distribution in the cage. This charge distribution is controlled by the number and location of APs and pyrene motifs. We show that, when these motifs are uniformly distributed in the cage and well‐separated from one other, stabilization of non‐IPR endohedral and exohedral derivatives, as well as pure carbon fullerene anions and cations, is the rule, rather than the exception. This suggests that non‐IPR derivatives might be even more common than IPR ones.  相似文献   

8.
《化学:亚洲杂志》2017,12(18):2379-2382
Cage transformations in fullerenes are rare phenomena which are still not fully understood. We report the first skeletal transformation of an Isolated‐Pentagon‐Rule (IPR) isomer of C78 fullerene upon high‐temperature chlorination which proceeds by six‐step Stone–Wales rearrangements affording non‐IPR, non‐classical (NC ) C78(NC 2)Cl24 with two cage heptagons, six pairs of fused pentagons, and an unprecedented loop‐like chlorination pattern. The following loss of a C2 unit results in C76(NC 3)Cl24 containing three cage heptagons.  相似文献   

9.
Fullerenes and their structure and stability have been a major topic of discussion and research since their discovery nearly 30 years ago. The isolated pentagon rule (IPR) has long served as a guideline for predicting the most stable fullerene cages. More recently, endohedral metallofullerenes have been discovered that violate the IPR. This article presents a systematic, temperature dependent, statistical thermodynamic study of the 24 possible IPR isomers of C84 as well as two of the experimentally known non‐IPR isomers (51365 and 51383), at several different charges (0, ?2, ?4, and ?6). From the results of this study, we conclude that the Hückel rule is a valid simpler explanation for the stability of fused pentagons in endohedral metallofullerenes. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Chlorination of the C100(18) fullerene with a mixture of VCl4 and SbCl5 gives rise to branched skeletal transformations affording non‐classical (NC) C94(NC1)Cl22 with one heptagon in the carbon cage together with the previously reported C96(NC3)Cl20 with three heptagons. The three‐step pathway to C94(NC1)Cl22 starts with two successive C2 losses of 5:6 C?C bonds to give two cage heptagons, whereas the third C2 loss of the 5:5 C?C bond from a pentalene fragment eliminates one of the heptagons. Quantum‐chemical calculations demonstrate that the two unusual skeletal transformations—creation of a heptagon in C96(NC3)Cl20 through a Stone–Wales rearrangement and the presently reported elimination of a heptagon through C2 loss—are both characterized by relatively low activation energy.  相似文献   

11.
Isolation and characterization of very large fullerenes is hampered by a drastic decrease of their content in fullerene soot with increasing fullerene size and a simultaneous increase of the number of possible IPR (Isolated Pentagon Rule) isomers. In the present work, fractions containing mixtures of C102 and C104 were isolated in very small quantities (several dozens of micrograms) by multi‐step recycling HPLC from an arc‐discharge fullerene soot. Two such fractions were used for chlorination with a VCl4/SbCl5 mixture in glass ampoules at 350–360 °C. The resulting chlorides were investigated by single‐crystal X‐ray diffraction using synchrotron radiation. By this means, two IPR isomers of C104, numbers 258 and 812 (of 823 topologically possible isomers), have been confirmed for the first time as chlorides, C1‐C104(258)Cl16 and D2‐C104(812)Cl24, respectively, while an admixture of C2‐C104(811)Cl24 was assumed to be present in the latter chloride. DFT calculations showed that pristine C104(812) belongs to rather stable C104 cages, whereas C104(258) is much less stable.  相似文献   

12.
High‐temperature chlorination of three IPR isomers of fullerene C88, C2‐C88(7), Cs‐C88(17), and C2‐C88(33), resulted in the isolation and X‐ray structural characterization of C88(7)Cl12, C88(7)Cl24, C88(17)Cl22, and C88(33)Cl12/14. Chlorination patterns of C88(7) and C88(33) isomers are unusual in that one or more pentagons remain free from chlorination while some other pentagons are occupied by two or three Cl atoms. The addition patterns of the isolated chlorides are discussed in terms of the distribution of twelve pentagons on the carbon cages and the formation of stabilizing isolated C=C bonds and benzenoid rings.  相似文献   

13.
The thermal reaction of the endohedral metallofullerene La2@D2(10611)‐C72, which contains two pentalene units at opposite ends of the cage, with 5,6‐diphenyl‐3‐(2‐pyridyl)‐1,2,4‐triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single‐crystal X‐ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C? C bond connecting two pentagon rings of C72. Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open‐cage derivative having three seven‐membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open‐cage derivatives were similar to those of La2@D2‐C72 whereas the oxidation potentials were shifted more negative than those of La2@D2‐C72. These results point out that further oxidation could occur easily in the derivatives.  相似文献   

14.
The chlorination of HPLC fractions with pristine giant fullerenes, C102 and C104, followed by X‐ray crystallographic study of chlorides, C102(603)Cl18/20 and C104(234)Cl16–22, confirmed the presence of the most stable IPR (IPR=Isolated Pentagon Rule) isomers, C102(603) and C104(234), in the fullerene soot. The discussion concerns the chlorination patterns of polychlorides and relative stability of pristine isomers of C102 and C104 fullerenes.  相似文献   

15.
High‐temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86(NC1)Cl24/26 and C84(NC2)Cl26, with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone–Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum‐chemical calculations demonstrate that the average energy of the C?Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon–pentagon adjacency.  相似文献   

16.
An extensive theoretical study of the Bingel–Hirsch addition of bromomalonate on scandium nitride endohedral fullerenes has been carried out. The prototypical and highly symmetrical Sc3N@Ih‐C80, with a structure that satisfies the isolated pentagon rule (IPR), and the non‐IPR Sc3N@D3(6140)‐C68 fullerene show analogous reaction paths despite the distinct topology of the carbon networks and different rotation freedom of the internal nitride cluster. For the two metallofullerenes, our results predict that the reaction takes place under kinetic control yielding open‐cage fulleroids on [6,6] bonds, which is in good agreement with experimental data. The theoretical studies also show that predicting the reactivity of endohedral metallofullerenes is not straightforward and often an accurate analysis of the potential energy surface is required.  相似文献   

17.
According to the isolated pentagon rule (IPR), for stable fullerenes, the 12 pentagons should be isolated from one another by hexagons, otherwise the fused pentagons will result in an increase in the local steric strain of the fullerene cage. However, the successful isolation of more than 100 endohedral and exohedral fullerenes containing fused pentagons over the past 20 years has shown that strain release of fused pentagons in fullerene cages is feasible. Herein, we present a general overview on fused‐pentagon‐containing (i.e. non‐IPR) fullerenes through an exhaustive review of all the types of fused‐pentagon‐containing fullerenes reported to date. We clarify how the strain of fused pentagons can be released in different manners, and provide an in‐depth understanding of the role of fused pentagons in the stability, electronic properties, and chemical reactivity of fullerene cages.  相似文献   

18.
The complete set of 6332 classical isomers of the fullerene C68 as well as several non‐classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT‐based methods HCTH and B3LYP. C2:0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C682?, C684? and C686?, the isomers C682?(Cs:0064), C684?(C2v:0008), and C686?(D3:0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral Cs:0064, C2v:0008, and D3:0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc2C2@C68(C2v:0008) is ?6.95 eV, thus greatly releasing the strain of its parent fullerene (C2v:0008). Essentially, C68 fullerene isomers are charge‐stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C68 fullerenes effectively.  相似文献   

19.
Thermodynamic and kinetic stabilities of 73 C84 fullerene isomers were estimated from the MM3 heats of formation and the recently defined bond resonance energies (BREs), respectively. The BRE represents the contribution of a given π bond in a molecule to the topological resonance energy (TRE). All π bonds shared by two pentagons turned out to be highly reactive without exceptions. C84 fullerene isomers with such π bonds must be incapable of survival during harsh synthetic processes. Thus, the isolated pentagon rule (IPR) proved to be applicable to such large fullerene cages. For sufficiently large fullerenes like C84, some isolated-pentagon isomers are also predicted to be very unstable with highly antiaromatic π bonds. © 1996 by John Wiley & Sons, Inc.  相似文献   

20.
In terms of density functional theory combined with statistic mechanics computations, we investigated a dimetallic sulfide endohedral fullerene Sc2S@C76 which has been synthesized without any characterization in experiments. Our theoretical study reveals that Sc2S@Td(19151)‐C76 which satisfies the isolated‐pentagon rule (IPR) possesses the lowest energy, followed by three non‐IPR structures (Sc2S@C2v(19138)‐C76, Sc2S@Cs (17490)‐C76, and Sc2S@C1(17459)‐C76). To clarify the relative stabilities of those isomers at high temperatures, enthalpy–entropy interplay has been taken into consideration. Calculation results indicate that three species Sc2S@Td(19151)‐C76, Sc2S@C2v(19138)‐C76, and Sc2S@C1(17459)‐C76 have noticeable molar fractions at the fullerene‐formation temperature region (500–3000K), and the Sc2S@C1(17459)‐C76 with one pentagon pair becomes the most predominant isomer above 1800 K, suggesting that the unexpected non‐IPR structure is thermodynamically favorable at elevated temperatures. In addition, the structural characteristics, electron features, UV‐vis‐NIR adsorptions, and 13C NMR spectra of those three stable structures are introduced to assist experimental identification and characterization in future. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号