首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a summary of recent advances in the understanding of the UV photophysics of the isolated DNA base adenine, emphasizing a discussion of the mechanisms behind the ultrafast relaxation following excitation to the ππ* band. Drawing on our femtosecond time‐resolved photoelectron spectroscopy experiments, we discuss differences in the ultrafast relaxation of adenine and 9‐methyladenine and consider the relative merits of the various proposed mechanisms.  相似文献   

2.
Using mixed quantum–classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto‐cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto‐cytosine to the ground state. Non‐adiabatic transfer between the ππ* and nπ* excited states and deactivation via three‐state conical intersections is observed in the very early stage of the dynamics. In less than 100 fs, a large amount of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients observed experimentally.  相似文献   

3.
4.
5.
3′,5′‐Dimethoxybenzoin (DMB) is a bichromophoric system that has widespread application as a highly efficient photoremovable protecting group (PRPG) for the release of diverse functional groups. The photodeprotection of DMB phototriggers is remarkably clean, and is accompanied by the formation of a biologically benign cyclization product, 3′,5′‐dimethoxybenzofuran (DMBF). The underlying mechanism of the DMB deprotection and cyclization has, however, until now remained unclear. Femtosecond transient absorption (fs‐TA) spectroscopy and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopy were employed to detect the transient species directly, and examine the dynamic transformations involved in the primary photoreactions for DMB diethyl phosphate (DMBDP) in acetonitrile (CH3CN). To assess the electronic character and the role played by the individual sub‐chromophore, that is, the benzoyl, and the di‐meta‐methoxybenzylic moieties, for the DMBDP deprotection, comparative fs‐TA measurements were also carried out for the reference compounds diethyl phosphate acetophenone (DPAP), and 3′,5′‐dimethoxybenzylic diethyl phosphate (DMBnDP) in the same solvent. Comparison of the fs‐TA spectra reveals that the photoexcited DMBDP exhibits distinctly different spectral character and dynamic evolution from those of the reference compounds. This fact, combined with the related steady‐state spectral and density functional theoretical results, strongly suggests the presence in DMBDP of a significant interaction between the two sub‐chromophores, and that this interaction plays a governing role in determining the nature of the photoexcitation and the reaction channel of the subsequent photophysical and photochemical transformations. The ns‐TR3 results and their correlation with the fs‐TA spectra and dynamics provide evidence for a novel concerted deprotection–cyclization mechanism for DMBDP in CH3CN. By monitoring the direct generation of the transient DMBF product, the cyclization time constant was determined unequivocally to be ≈1 ns. This indicates that there is little relevance for the long‐lived intermediates (>10 ns) in giving the DMBF product, and excludes the stepwise mechanism proposed in the literature as the major pathway for the DMB cyclization reaction. This work provides important new insights into the origin of the 3′,5′‐dimethoxy substitution effect for the DMB photodeprotection. It also helps to clarify the many different views presented in previous mechanistic studies of the DMB PRPGs. In addition to this, our fs‐TA results on the reference compound DMBnDP in CH3CN provide the first direct observation (to the best of our knowledge) showing the predominance of a prompt (≈2 ps) heterolytic bond cleavage after photoexcitation of meta‐methoxybenzylic compounds. This provides insight into the long‐term controversies about the photoinitiated dissociation mode of related substituted benzylic compounds.  相似文献   

6.
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices.  相似文献   

7.
8.
Two‐dimensional nuclear magnetic resonance (NMR) spectroscopy is useful for studying temperature‐dependent effects on molecular structure. However, experimental time is usually long, because sampling is repeated at several temperatures. A novel solution to the problem is proposed, in which signal sampling is performed in parallel to the linear temperature‐sweep.  相似文献   

9.
Hemithioindigo (HTI) photoswitches have a tremendous potential for biological and supramolecular applications due to their absorptions in the visible‐light region in conjunction with ultrafast photoisomerization and high thermal bistability. Rational tailoring of the photophysical properties for a specific application is the key to exploit the full potential of HTIs as photoswitching tools. Herein we use time‐resolved absorption spectroscopy and Hammett analysis to discover an unexpected principal limit to the photoisomerization rate for donor‐substituted HTIs. By using stationary absorption and fluorescence measurements in combination with theoretical investigations, we offer a detailed mechanistic explanation for the observed rate limit. An alternative way of approaching and possibly even exceeding the maximum rate by multiple donor substitution is demonstrated, which give access to the fastest HTI photoswitch reported to date.  相似文献   

10.
The excited state dynamics of protonated adenine in the gas phase were investigated by femtosecond pump-probe transient mass spectroscopy. Adenine was protonated in an electrospray ionization source and transferred to a Paul trap. Two femtosecond laser pulses at 266 nm and 800 nm excited the lowest electronic pipi* state and probed the excited-state dynamics by monitoring ion fragment formation. The measured excited state decay is monoexponential with a lifetime shorter than 161 fs. This agrees with a theoretical prediction of very fast internal conversion via a conical intersection with the ground state.  相似文献   

11.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

12.
The molecule HTI, which combines hemithioindigo and hemistilbene molecular parts, allows reversible switching between two isomeric states. Photochromic behaviour of the HTI molecule is observed by irradiation with UV/Vis light. The photochemical reaction, a Z/E isomerization around the central double bond connecting the two molecular parts, is investigated by transient absorption and emission spectroscopy. For a special HTI molecule, namely, an omega-amino acid, the Z-->E isomerization process occurs on a timescale of 30 ps. In the course of the reaction fast processes on the 1-10 ps timescale are observed which point to motions of the molecule on the potential-energy surface of the excited state. The combination of transient absorption experiments in the visible spectral range with time-resolved fluorescence and infrared measurements reveal a photochemical pathway with three intermediate states. Together with a theoretical modelling procedure the experiments point to a sequential reaction scheme and give indications of the nature of the involved intermediates.  相似文献   

13.
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.  相似文献   

14.
The intramolecular [2+2] photocycloaddition of four 4‐(but‐3‐enyl)oxyquinolones (substitution pattern at the terminal alkene carbon atom: CH2, Z‐CHEt, E‐CHEt, CMe2) and two 3‐(but‐3‐enyl)oxyquinolones (substitution pattern: CH2, CMe2) was studied. Upon direct irradiation at λ=300 nm, the respective cyclobutane products were formed in high yields (83–95 %) and for symmetrically substituted substrates with complete diastereoselectivity. Substrates with a Z‐ or E‐substituted terminal double bond showed a stereoconvergent reaction course leading to mixtures of regio‐ and diastereomers with almost identical composition. The mechanistic course of the photocycloaddition was elucidated by transient absorption spectroscopy. A triplet intermediate was detected for the title compounds, which–in contrast to simple alkoxyquinolones such as 3‐butyloxyquinolone and 4‐methoxyquinolone–decayed rapidly (τ≈1 ns) through cyclization to a triplet 1,4‐diradical. The diradical can evolve through two reaction channels, one leading to the photoproduct and the other leading back to the starting material. When the photocycloaddition was performed in the presence of a chiral sensitizer (10 mol %) upon irradiation at λ=366 nm in trifluorotoluene as the solvent, moderate to high enantioselectivities were achieved. The two 3‐(but‐3‐enyl)oxyquinolones gave enantiomeric excesses (ees) of 60 and 64 % at ?25 °C, presumably because a significant racemic background reaction occurred. The 4‐substituted quinolones showed higher enantioselectivities (92–96 % ee at ?25 °C) and, for the terminally Z‐ and E‐substituted substrates, an improved regio‐ and diastereoselectivity.  相似文献   

15.
《Chemphyschem》2004,5(8):1171-1177
The primary light‐induced processes of phycocyanobilin were studied by means of transient‐grating spectroscopy, whereby the excitation wavelength was varied over the spectral region of the ground‐state absorption. On the basis of the results obtained, both the rate of the photoreaction in phycocyanobilin and the ratio of the decay of different excited‐state species via two decay channels depend on the excitation wavelength. Furthermore, the formation of the photoreaction product is also dependent on the pump color. These data support a recently established model for the primary photoprocesses in phycocyanobilin. In addition, phycocyanobilin protonated at the basic pyrrolenine‐type nitrogen atom was included in the transient absorption study. The decay behavior was found to be almost unchanged when compared with the unprotonated form, and this suggests that protonation of the tetrapyrrole ring structure has no effect on the overall photochemistry.  相似文献   

16.
17.
Ultrafast UV/Vis pump/probe experiments on ortho‐, meta‐ and para‐hydroxy‐substituted azobenzenes (HO‐ABs), as well as for sulfasalazine, an AB‐based drug, were performed in aqueous solution. For meta‐HO‐AB, AB‐like isomerisation behaviour can be observed, whereas, for ortho‐HO‐AB, fast proton transfer occurs, resulting in an excited keto species. For para‐HO‐AB, considerable keto/enol tautomerism proceeds in the ground state, so after excitation the trans‐keto species isomerises into the cis form. Aided by TD‐DFT calculations, insight is provided into different deactivation pathways for HO‐AB, and reveals the role of hydroxy groups in the photochemistry of ABs, as well as their acetylation regarding sulfasalazine. Hydroxy groups are position‐specific substituents for AB, which allow tuning of the timescale of thermal relaxation, as well as the amount and contribution of the keto species to photochemical processes.  相似文献   

18.
19.
The mechanisms of photochemical isomerization reactions are investigated theoretically by using a model system of 1,2,4‐ oxadiazole with the CAS(14,9)/6‐311G(d) and MP2‐CAS‐(14,9)/ 6‐311++G(3df,3pd)//CAS(14,9)/6‐311G(d) methods. Three reaction pathways are examined, including 1) the direct mechanism, 2) the ring contraction–ring expansion mechanism, and 3) the internal cyclization–isomerization mechanism, which lead to two types of photoisomers. The theoretical findings suggest that conical intersections play a crucial role in the photorearrangement of 1,2,4‐oxadiazoles. These model investigations also indicate that the preferred reaction route for 1,2,4‐oxadiazole, which leads to phototransposition products, is as follows: reactant → Franck‐Condon region → conical intersection → photoproduct. In other words, the direct mechanism is a one‐step process that has no barrier. These theoretical results agree with the available experimental observations.  相似文献   

20.
A combined femtosecond transient absorption (fs‐TA) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreaction of 2‐benzoylpyridine (2‐BPy) in acetonitrile and neutral, basic and acidic aqueous solvents is reported. fs‐TA results showed that the nπ* triplet 2‐BPy is the precursor of the photocyclisation reaction in neutral and basic aqueous solvents. The cis triplet biradical and the cis singlet zwitterionic species produced during the photocyclisation reaction were initially characterised by ns‐TR3 spectroscopy. In addition, a new species was uniquely observed in basic aqueous solvent after the decay of the cis singlet zwitterionic species and this new species was tentatively assigned to the photocyclised radical anion. The ground‐state conformation of 2‐BPy in acidic aqueous solvent is the pyridine nitrogen‐protonated 2‐BPy cation (2‐BPy‐NH+) rather than the neutral form of 2‐BPy. After laser photolysis, the singlet excited state (S1) of 2‐BPy‐NH+ is generated and evolves through excited‐state proton transfer (ESPT) and efficient intersystem crossing (ISC) processes to the triplet exited state (T1) of the carbonyl oxygen‐protonated 2‐BPy cation (2‐BPy‐OH+) and then photocyclises with the lone pair of the nitrogen atom in the heterocyclic ring. Cyclisation reactions take place both in neutral/basic and acidic aqueous solvents, but the photocyclisation mechanisms in these different aqueous solvents are very different. This is likely due to the different conformation of the precursor and the influence of hydrogen‐bonding of the solvent on the reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号