首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The preparation of protonated methanesulfonamide was carried out using the superacidic systems HF/AsF5 and HF/SbF5. The vibrational spectroscopic characterization was supported by quantum chemical calculations performed with the PBE1PBE method using the 6‐311G++(3df, 3pd) basis set. A remarkable long nitrogen–sulfur bond length of 1.804(6) Å was observed in a single‐crystal X‐ray structure analysis of [CH3SO2NH3]+[Sb2F11]. It crystallizes in the orthorhombic space group P21/c with four formula units in the unit cell. Furthermore the crystal structure of CH3SO2NH2 was revisited.  相似文献   

2.
Chlorosulfonamide reacts in the superacidic solutions HF/GeF4 and HF/AsF5 under the formation of ([ClSO2NH3]+)2[GeF6]2– and [ClSO2NH3]+[AsF6], respectively. The chlorosulfonammonium salts were characterized by X‐ray single crystal structure analysis as well as vibrational spectroscopy and discussed together with quantum chemical calculations. ([ClSO2NH3]+)2[GeF6]2– crystallizes in the triclinic space group P1 with one formula unit in the unit cell. [ClSO2NH3]+[AsF6] crystallizes in the monoclinic space group P21/n with four formula units in the unit cell. Dependent on the counterion, [AsF6] or [GeF6]2–, considerable structural differences of the [ClSO2NH3]+ cation are observed. Furthermore, the hitherto unknown X‐ray single crystal structure of chlorosulfonamide is determined in the course of this study. Chlorosulfonamide crystallizes in the orthorhombic space group Pmc2 with four formula units per unit cell.  相似文献   

3.
Acetamide and thioacetamide react with the superacid solutions HF/MF5 (M = As, Sb) under formation of the corresponding salts [H3CC(OH)NH2]+MF6 and [H3CC(SH)NH2]+MF6 (M = As, Sb), respectively. The reaction of DF/AsF5 with acetamide and thioacetamide lead to the corresponding deuterated salts [H3CC(OD)ND2]+AsF6 and [H3CC(SD)ND2]+AsF6, respectively. The salts are characterized by vibrational and NMR spectroscopy, and in the case of [H3CC(OH)NH2]+AsF6 and [H3CC(SH)NH2]+AsF6 also by single‐crystal X‐ray analyses. The [H3CC(OH)NH2]+AsF6( 1 ) salt crystallizes in the triclinic space group P$\bar{1}$ with two formula units per unit cell, and the [H3CC(SH)NH2]+AsF6( 2 ) salt crystallizes in the monoclinic space group P21/c with four formula units per unit cell. In both crystal structures three‐dimensional networks are observed which are formed by intra‐ and intermolecular N–H ··· F and O–H ··· F or S–H ··· F hydrogen bonds, respectively. For the vibrational analyses, quantum chemically calculated spectra of the cations [H3CC(OH)NH2 · 3HF]+ and [H3CC(SH)NH2 · 2HF]+ are considered.  相似文献   

4.
The crystal structure of the title compound [systematic name: (1S,3aR,6aS)‐2‐((2S)‐2‐{[(2S)‐2‐cyclohexyl‐2‐(pyrazine‐2‐carbonylamino)acetyl]amino}‐3,3‐dimethylbutanoyl)‐N‐[(3S)‐1‐(cyclopropylamino)‐1,2‐dioxohexan‐3‐yl]‐3,3a,4,5,6,6a‐hexahydro‐1H‐cyclopenta[c]pyrrole‐1‐carboxamide], C36H53N7O6, contains two independent molecules, which possess distinct conformations and a disordered cyclopenta[c]pyrrolidine unit. In the crystal, molecules are linked into helical chains via three‐point N—H...O hydrogen‐bond connections in which three NH and three carbonyl groups per molecule are utilized. The chiralities of the six stereocentres per molecule inferred from this study are in agreement with the synthetic procedure.  相似文献   

5.
The reaction of Hg(AsF6)2 with a large molar excess of KrF2 in anhydrous HF has afforded the first homoleptic KrF2 coordination complex of a metal cation, [Hg(KrF2)8][AsF6]2?2 HF. The [Hg(KrF2)8]2+ dication is well‐isolated in the low‐temperature crystal structure of its HF‐solvated [AsF6]? salt, and consists of eight KrF2 molecules that are terminally coordinated to Hg2+ by means of Hg?F(KrF) bonds to form a slightly distorted, square‐antiprismatic coordination sphere around mercury. The Raman spectrum of [Hg(KrF2)8]2+ was assigned with the aid of calculated gas‐phase vibrational frequencies. Computational studies indicate that both electrostatic and orbital interactions are important for metal–ligand bonding and provide insight into the geometry of the [Hg(KrF2)8]2+ cation and the nature of noble‐gas difluoride ligand bonding.  相似文献   

6.
The methylamino diazonium cations [CH3N(H)N2]+ and [CF3N(H)N2]+ were prepared as their low‐temperature stable [AsF6]? salts by protonation of azidomethane and azidotrifluoromethane in superacidic systems. They were characterized by NMR and Raman spectroscopy. Unequivocal proof of the protonation site was obtained by the crystal structures of both salts, confirming the formation of alkylamino diazonium ions. The Lewis adducts CH3N3?AsF5 and CF3N3?AsF5 were also prepared and characterized by low‐temperature NMR and Raman spectroscopy, and also by X‐ray structure determination for CH3N3?AsF5. Electronic structure calculations were performed to provide additional insights. Attempted electrophilic amination of aromatics such as benzene and toluene with methyl‐ and trifluoromethylamino diazonium ions were unsuccessful.  相似文献   

7.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

8.
The benzoannelated diazapolyether macrocycles 6,7,9,10,17,18‐hexahydro‐5H,11H‐8,16,19‐trioxa‐5,11‐diazadibenzo[a,g]cyclopentadecene, C18H22N2O3, (I), 6,7,9,10,12,13,20,21‐octahydro‐5H,14H‐8,11,19,22‐tetraoxa‐5,14‐diazadibenzo[a,g]cyclooctadecene, C20H26N2O4, (II), and 6,7,9,10,17,18,20,21‐octahydro‐16H,22H‐5,8,11,19‐tetraoxa‐16,22‐diazadibenzo[a,j]cyclooctadecene 0.3‐hydrate, C20H26N2O4·0.304H2O, (III), show different patterns of hydrogen bonding. In (I), the amine H atoms participate only in intramolecular hydrogen bonds with ether O atoms. In (II), the amine H atoms form intramolecular hydrogen bonds with the phenoxy ether O atoms and intermolecular hydrogen bonds with alkyl ether O atoms in an adjacent molecule, forming a chain linking the macrocycles together via an R22(10) motif. Molecules of (II) were found on a crystallographic twofold axis. In (III), the amine H atoms participate in a hydrogen‐bond network with adjacent ether O atoms and with a water molecule [having a partial occupancy of 0.304 (6)] that links the molecules together via a C22(7) motif.  相似文献   

9.
Acetonitrile and [FXeOXe‐ ‐ ‐FXeF][AsF6] react at ?60 °C in anhydrous HF (aHF) to form the CH3CN adduct of the previously unknown [XeOXe]2+ cation. The low‐temperature X‐ray structure of [CH3CN‐ ‐ ‐XeOXe‐ ‐ ‐NCCH3][AsF6]2 exhibits a well‐isolated adduct‐cation that has among the shortest Xe?N distances obtained for an sp‐hybridized nitrogen base adducted to xenon. The Raman spectrum was fully assigned by comparison with the calculated vibrational frequencies and with the aid of 18O‐enrichment studies. Natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe?O bonds are semi‐ionic whereas the Xe?N bonds may be described as strong electrostatic (σ‐hole) interactions.  相似文献   

10.
The reaction of chlorosulfonyl isocyanate (ClSO2NCO) with anhydrous hydrogen fluoride (aHF) leads to the formation of ClSO2NHC(O)F. The title compound with a melting point of –38 °C is characterized by vibrational spectroscopy and a single crystal structure analysis. It crystallizes in the tetragonal space group I41/a with 16 formula units per unit cell. a = 11.1115(2) Å, c = 16.5654(6) Å. The experimental data are supported by quantum‐chemical calculations on the PBE1PBE/6‐311G(3pd,3df) level of theory.  相似文献   

11.
Synthesis, Crystal Structure, and Solid State Phase Transition of Te4[AsF6]2·SO2 The oxidation of tellurium with AsF5 in liquid SO2 yields Te42+[AsF6]2 which can be crystallized from the solution in form of dark red crystals as the SO2 solvate. The crystals are very sensitive against air and easily lose SO2, so handling under SO2 atmosphere or cooling is required. The crystal structure was determined at ambient temperature, at 153 K, and at 98 K. Above 127 K Te4[AsF6]2·SO2 crystallizes orthorhombic (Pnma, a = 899.2(1), b = 978.79(6), c = 1871.61(1) pm, V = 1647.13(2)·106pm3 at 297 K, Z = 4). The structure consists of square‐planar Te42+ ions (Te‐Te 266 pm), octahedral [AsF6] ions and of SO2 molecules which coordinate the Te4 rings with their O atoms in bridging positions over the edges of the square. At room temperature one of the two crystallographically independent [AsF6] ions shows rotational disorder which on cooling to 153 K is not completely resolved. At 127 K Te4[AsF6]2·SO2 undergoes a solid state phase transition into a monoclinic structure (P1121/a, a = 866.17(8), b = 983.93(5), c = 1869.10(6) pm, γ = 96.36(2)°, V = 1554, 2(2)·106 pm3 at 98 K, Z = 4). All [AsF6] ions are ordered in the low temperature form. Despite a direct supergroup‐subgroup relationship exists between the space groups, the phase transition is of first order with discontinuous changes in the lattice parameters. The phase transition is accompanied by crystal twinning. The main difference between the two structures lies in the different coordination of the Te42+ ion by O and F atoms of neighbored SO2 and [AsF6] molecules.  相似文献   

12.
The novel crystal structures of ethyl (S)‐P‐(4‐oxo‐4H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)‐N‐[(R)‐1‐phenylethyl]phosphonamidate, C20H20N3O3PS, I , and diethyl (4‐isopropyl‐2‐oxo‐3,4‐dihydro‐2H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)phosphonate, C18H25N2O4PS, II , were characterized by X‐ray diffraction analysis. The crystal packing of I is dominated by two infinite stacks composed of symmetry‐independent molecules linked by distinctively different hydrogen‐bond systems. The structure of II shows a ladder packing topology similar to those observed in related phosphorylated azaheterocycles. Structural studies are supplemented by calculations on the interactions stabilizing the molecular assemblies using the PIXEL method. Additionally, fingerprint plots derived from the Hirshfeld surfaces were generated for each structure to characterize the crystal packing arrangements in detail. The aromaticities of the heterocyclic moieties have been investigated using HOMA and HOMHED parametrization and compared with structures reported previously.  相似文献   

13.
The structure of ammonium hexafluoroarsenate, NH4AsF6, has been determined by X‐ray diffraction using a single crystal grown from saturated solution in anhydrous HF. NH4AsF6 crystallizes rhombohedral with the KOsF6 structure type, with a = 7.459(3) Å, c = 7.543(3) Å (at 200 K), Z = 3, space group (No. 148). No phase transition was observed in the 100 K–296 K temperature range. The structure is dominated by regular AsF6 octahedra and disordered NH4+ cations. Raman spectrum of a single crystal of NH4AsF6 shows the bands at 372 cm?1, 572 cm?1, 687 cm?1 (AsF6?) and at 3240 cm?1 and 3360 cm?1 (NH4+).  相似文献   

14.
In the crystal structure of the title compound, C13H13N3O, the C—Nimidazole bond length of 1.431 (3) Å is shorter than that observed [1.466 (6) Å] in the corresponding carbamoyl­imidazolium salt 3‐methyl‐1‐(1,2,3,4‐tetra­hydro­isoquinolin‐2‐yl­carbonyl)­imidazolium iodide. A comparision of these compounds is used to highlight the structural differences that occur as a result of the imidazolium effect. Weak C—H⋯O hydrogen bonds link mol­ecules into extended tapes in the a direction.  相似文献   

15.
A concise, efficient and versatile synthesis of amino‐substituted benzo[b]pyrimido[5,4‐f]azepines is described: starting from a 5‐allyl‐4,6‐dichloropyrimidine, the synthesis involves base‐catalysed aminolysis followed by intramolecular Friedel–Crafts cyclization. Four new amino‐substituted benzo[b]pyrimido[5,4‐f]azepines are reported, and all the products and reaction intermediates have been fully characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry, and the molecular and supramolecular structures of three products and one intermediate have been determined. In each of N,2,6,11‐tetramethyl‐N‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N5, (III), 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, which crystallizes as a 0.374‐hydrate, C21H19N5·0.374H2O, (VIIIa), and 6,7,9,11‐tetramethyl‐4‐(5‐methyl‐1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C24H25N5, (VIIIc), the azepine ring adopts a boat conformation, but with a different configuration at the stereogenic centre in (VIIIc), as compared with (III) and (VIIIa). In the intermediate 5‐allyl‐6‐(1H‐benzo[d]imidazol‐1‐yl)‐N‐methyl‐N‐(4‐methylphenyl)pyrimidin‐4‐amine, C22N21N5, (VIIb), the immediate precursor of 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,8,11‐trimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (VIIIb), the allyl group is disordered over two sets of atomic sites having occupancies of 0.688 (5) and 0.312 (5). The molecules of (III) are linked into chains by a C—H…π(pyrimidine) hydrogen bond, and those of (VIIb) are linked into complex sheets by three hydrogen bonds, one of the C—H…N type and two of C—H…π(arene) type. The molecules of the organic component in (VIIIa) are linked into a chain of rings by two C—H…π(arene) hydrogen bonds, and these chains are linked into sheets by the water components; a single weak C—H…N hydrogen bond links molecules of (VIIIc) into centrosymmetric R22(10) dimers. Comparisons are made with some related compounds.  相似文献   

16.
The title compound [systematic name: 5‐amino‐3‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)thiazolo[4,5‐d]pyrimidine‐2,7‐(3H,6H)‐dione], C10H12N4O5S, exhibits a syn glycosylic bond conformation, with a torsion angle χ of 61.0 (3)°. The furanose moiety adopts the N‐type sugar pucker (3T4), with P = 33.0 (5)° and τm = 15.1 (1)°. The conformation at the exocyclic C4′—C5′ bond is +ap (trans), with the torsion angle γ = 176.71 (14)°. The extended structure is a three‐dimensional hydrogen‐bond network involving O—H...O and N—H...O hydrogen bonds.  相似文献   

17.
Polymorph (Ia) of eldoral [5‐ethyl‐5‐(piperidin‐1‐yl)barbituric acid or 5‐ethyl‐5‐(piperidin‐1‐yl)‐1,3‐diazinane‐2,4,6‐trione], C11H17N3O3, displays a hydrogen‐bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2‐position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connected via N—H...O=C(4/6‐position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen‐bonded layers, parallel to (010), formed in the salt diethylammonium 5‐ethyl‐5‐(piperidin‐1‐yl)barbiturate [or diethylammonium 5‐ethyl‐2,4,6‐trioxo‐5‐(piperidin‐1‐yl)‐1,3‐diazinan‐1‐ide], C4H12N+·C11H16N3O3, (II), closely resemble the corresponding hydrogen‐bonded structure in polymorph (Ia). Like many other 5,5‐disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain the R22(8) N—H...O=C hydrogen‐bond motif. However, the overall hydrogen‐bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen‐bond acceptor function in the piperidine group.  相似文献   

18.
The structures of 1H‐phenanthro[9,10‐d]imidazole, C15H10N2, (I), and 3,6‐dibromo‐1H‐phenanthro[9,10‐d]imidazole hemihydrate, C15H8Br2N2·0.5H2O, (II), contain hydrogen‐bonded polymeric chains linked by columns of π–π stacked essentially planar phenanthroimidazole monomers. In the structure of (I), the asymmetric unit consists of two independent molecules, denoted (Ia) and (Ib), of 1H‐phenanthro[9,10‐d]imidazole. Alternating molecules of (Ia) and (Ib), canted by 79.07 (3)°, form hydrogen‐bonded zigzag polymer chains along the a‐cell direction. The chains are linked by π–π stacking of molecules of (Ia) and (Ib) along the b‐cell direction. In the structure of (II), the asymmetric unit consists of two independent molecules of 3,6‐dibromo‐1H‐phenanthro[9,10‐d]imidazole, denoted (IIa) and (IIb), along with a molecule of water. Alternating molecules of (IIa), (IIb) and water form hydrogen‐bonded polymer chains along the [110] direction. The donor–acceptor distances in these N(imine)...H—O(water)...H—N(amine) hydrogen bonds are the shortest thus far reported for imidazole amine and imine hydrogen‐bond interactions with water. Centrosymmetrically related molecules of (IIa) and (IIb) alternate in columns along the a‐cell direction and are canted by 48.27 (3)°. The present study provides the first examples of structurally characterized 1H‐phenanthroimidazoles.  相似文献   

19.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

20.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号