首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The cationic gold phosphine complex [{PCy2(o‐biphenyl)}Au(NCMe)]+SbF6? (Cy=cyclohexyl) catalyzes the intermolecular, anti‐Markovnikov hydroamination reaction of monosubstituted and cis‐ and trans‐disubstituted alkylidenecyclopropanes (ACPs) with imidazolidin‐2‐ones and other nucleophiles. This reaction forms 1‐cyclopropyl alkylamine derivatives in high yield and with high regio‐ and diastereoselectivity. NMR spectroscopic analysis of gold π‐ACP complexes and control experiments point to the sp hybridization of the ACP internal alkene carbon atom as controlling the regiochemistry of the ACP hydroamination reaction.  相似文献   

2.
The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal‐free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen‐substituted isocyanates (N‐isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150–200 °C), and issues included competing hydroamination and N‐isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N‐isocyanates are reported. The use of βN‐benzyl carbazate precursors allows the effective minimization of N‐isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2‐migration of the benzyl group. Furthermore, fine‐tuning of the blocking (masking) group on the N‐isocyanate precursor, and reaction conditions relying on base catalysis for N‐isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β‐aminocarbonyl motif.  相似文献   

3.
The development of regioselective anti‐Markovnikov alkene's hydroamination is a long‐standing goal in catalysis. The [Rh(COD)(DPEphos)]+ complex is the most general and regioselective group 9 catalyst for such a process. The reaction mechanism for intermolecular hydroamination of alkenes catalyzed by [Rh(DPEphos)]+ complex is analyzed by means of DFT calculations. Hydroamination (alkene vs. amine activation routes) as well as oxidative amination pathways are analyzed. According to the computational results the operating mechanism can be generally described by alkene coordination, amine nucleophilic addition, proton transfer through the metal center and reductive elimination steps. The mechanism for the formation of the oxidative amination side product goes via a β‐elimination after the nucleophilic addition and metal center protonation steps. The origin of the regioselectivity for the addition process (Markovnikov vs. anti‐Markovnikov additions) is shown to be not charge but orbitally driven. Remarkably, η2 to η1 slippage degree on the alkene coordination mode is directly related to the regioselective outcome.  相似文献   

4.
The first oxidative C(sp3)−H/C(sp3)−H cross‐dehydrogenative coupling (CDC) reaction promoted by an internal oxidant is reported. This copper‐catalyzed CDC reaction of oxime acetates and trifluoromethyl ketones provides a simple and efficient approach towards 2‐trifluoromethyldihydropyrrol‐2‐ol derivatives in a highly diastereoselective manner by cascade C(sp3)−C(sp3) bond formation and cyclization. These products were further transformed into various significant and useful trifluoromethylated heterocyclic compounds, such as trifluoromethylated furan, thiophene, pyrrole, dihydropyridazine, and pyridazine derivatives. A trifluoromethylated analogue of an Aβ42 lowering agent was also synthesized smoothly. Preliminary mechanistic studies indicated that this reaction involves a copper(I)/copper(III) catalytic cycle with the oxime acetate acting as an internal oxidant.  相似文献   

5.
The exploitation of new and active earth‐abundant metal catalysts is critical for sustainable chemical production. Herein, we demonstrate the design of highly efficient, robust, and reusable ZnII‐bipyridine‐based metal–organic framework (MOF) catalysts for the intramolecular hydroamination of o‐alkynylanilines to indoles. Under similar conditions homogeneous catalytic systems mainly provide hydrolysate. Our results prove that MOFs support unique internal environments that can affect the direction of chemical reactions. The ZnII‐catalyzed hydroamination reaction can be conducted without additional ligands, base, or acid, and is thus a very clean reaction system with regard to its environmental impact.  相似文献   

6.
Reported here is a terminal‐selective, remote asymmetric hydroalkylation of olefins with racemic α‐bromo amides. The reaction proceeds by NiH‐catalyzed alkene isomerization and subsequent alkylation reaction, and can enantioconvergently introduce an unsymmetrical secondary alkyl group from a racemic α‐bromo amide onto a terminal C(sp3)?H position along the hydrocarbon chain of the alkene. This mild process affords a range of structurally diverse chiral α‐alkylalkanoic amides in excellent yields, and high regio‐ and enantioselectivities. In addition, the synthetic utility of this protocol is further highlighted by the regioconvergent conversion of industrial raw materials of isomeric olefin mixtures into enantioriched α‐alkylalkanoic amides on large scale.  相似文献   

7.
Despite the growing interest in iron catalysis and hydroamination reactions, iron‐catalyzed hydroamination of unprotected primary aliphatic amines and unactivated alkenes has not been reported to date. Herein, a novel well‐defined four‐coordinate β‐diketiminatoiron(II) alkyl complex is shown to be an excellent precatalyst for the highly selective cyclohydroamination of primary aliphatic alkenylamines at mild temperatures (70–90 °C). Both empirical kinetic analyses and the reactivity of an isolated iron(II) amidoalkene dimer, [LFe(NHCH2CPh2CH2CH?CH2)]2 favor a stepwise σ‐insertive mechanism that entails migratory insertion of the pendant alkene into an iron–amido bond associated with a rate‐determining aminolysis step.  相似文献   

8.
Thiostrepton is a potent antibiotic against a broad range of Gram‐positive bacteria, but its medical applications have been limited by its poor aqueous solubility. In this work, the first C(sp2)?H amidation of dehydroalanine (Dha) residues was applied to the site selective modification of thiostrepton to prepare a variety of derivatives. Unlike all prior methods for the modification of thiostrepton, the alkene framework of the Dha residue is preserved and with complete selectivity for the Z‐stereoisomer. Additionally, an aldehyde group was introduced by C?H amidation, enabling oxime ligation for the installation of an even greater range of functionality. The thiostrepton derivatives generally maintain antimicrobial activity, and importantly, eight of the derivatives displayed improved aqueous solubility (up to 28‐fold), thereby addressing a key shortcoming of this antibiotic. The exceptional functional group compatibility and site selectivity of CoIII‐catalyzed C(sp2)?H Dha amidation suggests that this approach could be generalized to other natural products and biopolymers containing Dha residues.  相似文献   

9.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N][Me4N+] and [Ph3C][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (CO and CN) in the hydroamination of Ar NCO and R NCN R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated CC bonds in H2CCHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

10.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N?][Me4N+] and [Ph3C?][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (C?O and C?N) in the hydroamination of Ar? N?C?O and R? N?C?N? R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated C?C bonds in H2C?CHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

11.
Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ?‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)?C(sp3) reductive elimination.  相似文献   

12.
3,5-Disubstituted Δ2-isoxazolines can be prepared from the corresponding β,γ-unsaturated ketones by treatment with hydroxylamine hydrochloride and sodium hydroxide. Evidence indicates that the mechanism of this reaction involves the formation of three intermediates; oximation of the ketone, rearrangement of the alkene, and intramolecular Michael addition of the resulting α,β-unsaturated oxime.  相似文献   

13.
The interaction between the peri substituents in the title compound, C18H18N2O2, measured at 150 K, represents an early stage in the addition reaction of an amino group to an electron‐deficient alkene, and has an N?Csp2 separation of 2.531 (2) Å; comparison with related structures indicates that the nitrile group activates an alkene to nucleophilic attack more than a coplanar carboxyl­ic ester group.  相似文献   

14.
An efficient multicomponent reaction for the synthesis of stereoenriched cyclopentyl‐isoxazoles from camphor‐derived α‐oximes, alkynes, and MeOH is reported. Our method involved a series of cascade transformations, including the in situ generation of an IIII catalyst, which catalyzed the addition of MeOH to a sterically hindered ketone. Oxidation of the oxime, and rearrangement of the α‐hydroxyiminium ion generated a nitrile oxide in situ, which, upon [3+2] cycloaddition reaction with an alkyne, delivered the regioselective product. This reaction was very selective for the syn‐oxime. This multicomponent approach was also extended to the synthesis of a new glycoconjugate, camphoric ester‐isoxazole C‐galactoside.  相似文献   

15.
Three mechanistic pathways for the [Ind(2)TiMe(2)]-catalyzed intramolecular hydroamination of alkenes have been investigated by employing density functional theory calculations on the possible intermediates and transition states. The results indicate that the reaction cycle proceeds via a Ti-imido-amido complex as the catalytically active species. However, at the moment, the question as to whether this imido-amido complex is involved in a [2+2]-cycloaddition with the alkene or a newly proposed insertion of the alkene into a Ti--N single bond cannot be answered; the calculated barriers of both the insertion mechanism and the [2+2]-cycloaddition mechanism are similar (143 vs. 136 kJ mol(-1)), and both pathways are in accordance with the experimentally observed rate law (first-order dependence on the aminoalkene concentration). Interestingly, the newly proposed insertion mechanism that takes place by an insertion of the alkene moiety into the Ti--N single bond of an imido-amido complex seems to be much more likely than a mechanism that involves an alkene insertion into a Ti--N single bond of a corresponding trisamide. The latter mechanism, which has been proposed in analogy to rare-earth-metal-catalyzed hydroamination reactions, can be ruled out for two reasons: a surprisingly high activation barrier (164 kJ mol(-1)) and the fact that the rate-limiting insertion step is independent of the aminoalkene concentration. This is in sharp contrast to the experimental findings for indenyltitanium catalysts.  相似文献   

16.
Intermolecular C?H alkylation of simple arenes in the presence of an iron catalyst has been achieved in a cascade manner with an aminative cyclization triggered by N?O bond cleavage of an alkene‐tethered oxime ester. Various arenes, including electron‐rich and electron‐poor arenes, and heteroarenes can be employed in the reaction system. Regioselectivity and radical trapping experiments support the involvement of alkyl radical species, which undergo a homolytic aromatic substitution (HAS) to afford the arylation products.  相似文献   

17.
The total synthesis of the pentacyclic tetrahydroisoquinoline alkaloid quinocarcin, which possesses intriguing structural and biological features, has been achieved through a gold(I)‐catalyzed regioselective hydroamination reaction. It is noteworthy that the regioselectivity of the intramolecular hydroamination of an unsymmetrical alkyne could be completely switched through substrate control. Other key features of this synthesis include the highly stereoselective synthesis of 2,5‐cis‐pyrrolidine through the intramolecular amination of the bromoallene and the Lewis acid mediated ring opening of dihydrobenzofuran.  相似文献   

18.
《化学:亚洲杂志》2017,12(3):278-282
A combined kinetic and theoretical study was conducted in order to clarify the details on the reaction mechanism for Ni0/It Bu‐catalyzed intramolecular alkene hydroacylation. The results confirm the hypothesis that this intramolecular hydroacylation proceeds through an oxanickelacycle key intermediate.  相似文献   

19.
The visible‐light‐promoted decarboxylation of α‐imino‐oxy propionic acids for the generation of iminyl radicals has been accomplished through the use of Ir(dFCF3ppy)2(dtbbpy)PF6 as a photoredox catalyst. Different from visible‐light‐promoted homolysis and single‐electron reduction of oxime derivatives, this strategy provides a novel catalytic cycle for alkene carboimination through a sequence comprising N‐radical generation, iminyl radical cyclization, intermolecular conjugate addition to a Michael acceptor, and single‐electron reduction to afford various pyrroline derivatives in an overall redox‐neutral process. The indolizidine alkaloid skeleton could be easily constructed from a pyrroline derivative prepared by this synthetic method.  相似文献   

20.
Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)‐based N,N‐ligands. The reactions of phenalenyl‐based ligands with ZnMe2 led to the formation of organozinc complexes [N(Me),N(Me)‐PLY]ZnMe ( 1 ) and [N(iPr),N(iPr)‐PLY]ZnMe ( 2 ) under the evolution of methane. Both complexes ( 1 and 2 ) were characterized by NMR spectroscopy and elemental analysis. The solid‐state structures of complexes 1 and 2 were determined by single‐crystal X‐ray crystallography. Complexes 1 and 2 were used as catalysts for the intramolecular hydroamination of unactivated primary and secondary aminoalkenes. A combined approach of NMR spectroscopy and DFT calculations was utilized to obtain better insight into the mechanistic features of the zinc‐catalyzed hydroamination reactions. The progress of the catalysis for primary and secondary aminoalkene substrates with catalyst 2 was investigated by detailed kinetic studies, including kinetic isotope effect measurements. These results suggested pseudo‐first‐order kinetics for both primary and secondary aminoalkene activation processes. Eyring and Arrhenius analyses for the cyclization of a model secondary aminoalkene substrate afforded ΔH=11.3 kcal mol?1, ΔS=?35.75 cal K?1 mol?1, and Ea=11.68 kcal mol?1. Complex 2 exhibited much‐higher catalytic activity than complex 1 under identical reaction conditions. The in situ NMR experiments supported the formation of a catalytically active zinc cation and the DFT calculations showed that more active catalyst 2 generated a more stable cation. The stability of the catalytically active zinc cation was further supported by an in situ recycling procedure, thereby confirming the retention of catalytic activity of compound 2 for successive catalytic cycles. The DFT calculations showed that the preferred pathway for the zinc‐catalyzed hydroamination reactions is alkene activation rather than the alternative amine‐activation pathway. A detailed investigation with DFT methods emphasized that the remarkably higher catalytic efficiency of catalyst 2 originated from its superior stability and the facile formation of its cation compared to that derived from catalyst 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号