首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two pyrrolidinylidenesulfamido‐modified β‐cyclodextrins (β‐CDs) 3 and 4 were prepared and studied for chiral discrimination of the enantiomers (R)‐ and (S)‐ 1 of zolmitriptan. The pyrrolidinylidenesulfamido spacer improved the chiral discrimination and binding abilities of these modified cyclodextrins. The hosts 3 and 4 showed higher selectivity for (S)‐ 1 . The association constants (Table) and enantioselectivity factors were calculated for the complexes of (R)‐ and (S)‐ 1 with the β‐CDs 2 – 4 . The formation of host?guest complexes was confirmed by 1H‐NMR studies.  相似文献   

2.
Two diastereoisomers of the new, potentially insecticidal ‘p‐menthane‐3,8,9‐triol’ (=(2S)‐ and (2R)‐ 2‐[(1R,2R,4R)‐2‐hydroxy‐4‐methylcyclohexyl]propane‐1,2‐diol; (8S)‐ and (8R)‐ 1 ), have been synthesized from (–)‐isopulegol by both conventional dihydroxylation and catalytic Sharpless dihydroxylation (Scheme). The absolute configuration at C(8) of the corresponding orthoformate adduct (8S)‐ 3a was determined by 1H‐NMR and X‐ray crystallographic analysis (Figure).  相似文献   

3.
The crystal structures of salt 8 , which was prepared from (R)‐2‐methoxy‐2‐(2‐naphthyl)propanoic acid ((R)‐MβNP acid, (R)‐ 2 ) and (R)‐1‐phenylethylamine ((R)‐PEA, (R)‐ 6 ), and salt 9 , which was prepared from (R)‐2‐methoxy‐2‐(1‐naphthyl)propanoic acid ((R)‐MαNP acid, (R)‐ 1 ) and (R)‐1‐(p‐tolyl)ethylamine ((R)‐TEA, (R)‐ 7 ), were determined by X‐ray crystallography. The MβNP and MαNP anions formed ion‐pairs with the PEA and TEA cations, respectively, through a methoxy‐group‐assisted salt bridge and aromatic CH???π interactions. The networks of salt bridges formed 21 columns in both salts. Finally, (S)‐(2E,6E)‐(1‐2H1)farnesol ((S)‐ 13 ) was prepared from the reaction of (2E,6E)‐farnesal ( 11 ) with deuterated (R)‐BINAL‐H (i.e., (R)‐BINAL‐D). The enantiomeric excess of compound (S)‐ 13 was determined by NMR analysis of (S)‐MαNP ester 14 . The solution‐state structures of MαNP esters that were prepared from primary alcohols were also elucidated.  相似文献   

4.
The eight (arylalkyl)‐modified phosphoramidites (=(arylalkyl)phosphonamidites) 1 – 8 (Fig. 2) were synthesized (Schemes 13) and incorporated at different positions into 2′‐deoxyoligonucleotides. The [P(R)]‐ and [P(S)]‐diastereoisomers of the hexanucleotides 32 – 39 (Table 1) and of the dodecanucleotides 41 – 45 (Table 2) obtained were separated by means of reversed‐phase HPLC. UV, CD, and fluorescence spectroscopy were used to investigate the thermal stability (Tm) and the structural changes of their DNA duplexes with 5′‐d(CGCGCG)‐3′ and 5′‐d(ATGATTGACCTG)‐3′, respectively. The Tm values significantly depend on the place of modification (Table 2). A dangling‐end effect is observed when the [3‐(anthracen‐9‐yl)propyl]‐modified 8 is attached at the 5′‐terminus (see duplex with 45c ). In the case of the incorporation of aromatic moieties tethered via a methylene linker to the P‐atom (benzyl‐ and (naphthalen‐1‐ylmethyl)‐modified 1 and 6 , resp.), the duplexes with the [P(R)]‐oligonucleotides are more stable than those with the [P(S)]‐isomers, whereas in the case of longer alkyl chains at the P‐atom (see 2 – 5 ), the Tm values show the reverse tendency. The observed Tm differences are assigned to changes in base stacking (Figs. 6 and 7).  相似文献   

5.
(6′S)‐ and (6′R)‐‘Capsorubol‐6‐one' (=(3S,3′S,5R,5′R,6′S)‐ and (3S,3′S,5R,5′R,6′R)‐3,3′,6′‐trihydroxy‐κ,κ‐caroten‐6‐one; 8 and 9 , resp.), (6S,6′R)‐ and (6R,6′R)‐capsorubol (=3S,3′S,5R,5′R,6S,6′R)‐ and (3S,3′S,5R,5′R,6R,6′R)‐κ,κ‐carotene‐3,3′,6,6′‐tetrol; 11 and 12 , resp.) and (6′S)‐ and (6′R)‐cryptocapsol (=(3′S,5′R,6′S)‐ and (3′S,5′R,6′R)‐β,κ‐carotene‐3′,6′‐diol; 5 and 6 , resp.) were prepared in crystalline from by the reduction of capsorubin (=(3S,3′S,5R,5′R)‐3,3′‐dihydroxy‐κ,κ‐carotene‐6,6′‐dione; 7 ) and cryptocapsin (=(3′S,5′R)‐3′‐hydroxy‐β,κ‐caroten‐6′‐one; 4 ) and characterized by their UV/VIS, CD, 1H‐NMR, and mass spectra.  相似文献   

6.
Inexpensive acryloyl chloride was converted in 91% overall yield to two derivatives of β‐alanine, (R,R,R)‐ 6 and (R,R,S)‐ 6 , containing two chiral auxiliaries. C‐Alkylation of (R,R,R)‐ and (R,R,S)‐ 6 via a dianion derivative, was performed by direct metallation with 2.2 equiv. of lithium hexamethyldisilazane (LHMDS) in THF at ?78°. C‐Alkylation of (R,R,S)‐ 6 ‐Li2 (‘matched' pair of chiral auxiliaries) afforded the mono‐alkylated products 8 – 11 in 29–96% yield and 54–95% stereoselectivity. Employment of LiCl as an additive generally increased stereoselectivities, whereas the effect of HMPA as a cosolvent was erratic. Chemical correlation of the major diastereoisomer from the alkylation reactions with (S)‐α‐alkyl‐β‐alanine ( 12 – 15 ) showed that addition of the electrophile preferentially takes place on the enolate's Si‐face. This conclusion is also supported by molecular‐modeling studies (ab initio HF/3‐21G), which indicate that the lowest‐energy conformation for (R,R,S)‐ 6 ‐Li2 presents the more sterically hindered Re‐face of the enolate. The theoretical studies also predict a determining role for N? Li? O chelation in (R,R,S)‐ 6 ‐Li2, giving rise to an interesting ‘ion‐triplet' configuration for the dilithium dianion.  相似文献   

7.
Violaxanthin A (=(all‐E,3S,5S,6R,3′S,5′S,6′R)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol =syn,syn‐violaxanthin; 5 ) and violaxanthin B (=(all‐E,3S,5S,6R,3′S,5′R,6′S)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol=syn,anti‐violaxanthin; 6 ) were prepared by epoxidation of zeaxanthin diacetate ( 1 ) with monoperphthalic acid. Violaxanthins 5 and 6 were submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structure of the main products, i.e., (9Z)‐ 5 , (13Z)‐ 5 , (9Z)‐ 6 , (9′Z)‐ 6 , (13Z)‐ 6 , and (13′Z)‐ 6 , was determined by their UV/VIS, CD, 1H‐NMR, 13C‐NMR, and mass spectra.  相似文献   

8.
The chiral compounds (R)‐ and (S)‐1‐benzoyl‐2,3,5,6‐tetrahydro‐3‐methyl‐2‐(1‐methylethyl)pyrimidin‐4(1H)‐one ((R)‐ and (S)‐ 1 ), derived from (R)‐ and (S)‐asparagine, respectively, were used as convenient starting materials for the preparation of the enantiomerically pure α‐alkylated (alkyl=Me, Et, Bn) α,β‐diamino acids (R)‐ and (S)‐ 11 – 13 . The chiral lithium enolates of (R)‐ and (S)‐ 1 were first alkylated, and the resulting diasteroisomeric products 5 – 7 were aminated with ‘di(tert‐butyl) azodicarboxylate’ (DBAD), giving rise to the diastereoisomerically pure (≥98%) compounds 8 – 10 . The target compounds (R)‐ and (S)‐ 11 – 13 could then be obtained in good yields and high purities by a hydrolysis/hydrogenolysis/hydrolysis sequence.  相似文献   

9.
Two trans stereoisomers of 3‐methylcyclopentadecanol (=muscol), (1R,3R)‐ 2 and (1S,3S)‐ 2 , were efficiently synthesized from (3RS)‐3‐methylcyclopentadecanone (=muscone; (3RS)‐ 1 ) by a highly stereoselective reduction (Scheme). L‐Selectride® (=lithium tri(sec‐butyl)borohydride) was used, followed by the enantiomer resolution by lipase QLG (Alcaligenes sp.). The cis stereoisomers of muscol, (1S,3R)‐ 2 and (1R,3S)‐ 2 , were obtained by the Mitsunobu inversion of (1R,3R)‐ 2 and (1S,3S)‐ 2 , respectively (Scheme). The absolute configuration of (1R,3R)‐ 2 was determined by X‐ray crystal‐structure analysis of its 3‐nitrophthalic acid monoester, 2‐[(1R,3R)‐3‐methylcyclopentadecyl hydrogen benzene‐1,2‐dicarboxylate ((1R,3R)‐ 3b ), and by oxidation of (1R,3R)‐ 2 to (3R)‐muscone.  相似文献   

10.
Systematic investigation of asymmetric trimethylsilylcyanation of heterocyclic azomethines has been realized. The addition of trimethylsilyl cyanide to optically active furan, thiophene and pyridine aldimines, derived from (R)‐ and (S)‐1‐phenylethylamine, was studied in the presence of Lewis acids, and a series of the corresponding α‐amino nitriles was obtained in fair to good yields (up to 91%). Unsaturated nitriles were also formed from pyridine imines. The sense of asymmetric induction and the degree of diastereoselectivity in the synthesis of α‐amino nitriles were determined by means of 1H NMR. The stereochemical outcome is a result of the same sense of asymmetric induction: Re face attack to the (S)‐imines and Si face addition to the (R)‐imines took place. The (R,R)‐ (up to 81%) or (S,S)‐ (up to 87%) α‐amino nitriles predominated in the products obtained from the all furan, thiophene and pyridine (R)‐ or (S)‐imines respectively. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

12.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

13.
The incorporation of F atoms endows a diethenylbiphenyl‐based electron donor with configurational stability and SNAr reactivity. The former enables the dynamic redox pair of (Rax)‐ 1 /(Rax,R,R)‐ 1 2+ to exhibit drastic UV/Vis and CD spectral changes upon electrolysis, whereas the latter makes it possible for (Rax)‐ 1 to serve as a useful chiral synthon for the production of larger assemblies [(Rax,Rax)‐ 2 d,p,m and (Rax,Rax,Rax)‐ 3 ] containing two or three dyrex units. These dyads and triad also exhibit a clean electrochiroptical response with isosbestic points owing to one‐wave multi‐electron transfer.  相似文献   

14.
The absolute configuration of decipinone ( 2 ), a myrsinane‐type diterpene ester previously isolated from Euphorbia decipiens, has been determined by NMR study of its axially chiral derivatives (aR)‐ and (aS)‐N‐hydroxy‐2′‐methoxy‐1,1′‐binaphthalene‐2‐carboximidoyl chloride ((aR)‐MBCC ( 3a ) and (aS)‐MBCC ( 3b )). The absolute configurations at C(7) and C(13) of 2 determined were (R) and (S), respectively. Therefore, considering the relative configuration of 2 , the absolute configuration determined was (2S,3S,4R,5R,6R,7R,11S,12R,13S,15R).  相似文献   

15.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

16.
The hydrochlorides of both enantiomers of the antibiotic anisomycin were prepared starting with the ‘diacetone‐fructose’‐substituted allene 1 and the N‐Boc‐protected imine precursor 2a . Addition of an excess of lithiated 1 to 2a provided a 2 : 1 mixture 3a of diastereoisomers, which were cyclized to 4a under base promotion (Scheme 2). The two diastereoisomers of 4a were separated and converted into enantiomerically pure pyrrolidin‐3‐ones (2R)‐ 5a and (2S)‐ 5a . A similar sequence yielded the N‐Tos‐protected compounds (2R)‐ 5b and (2S)‐ 5b . Compounds 5a were converted into silyl enol ethers 6 and by subsequent regio‐ and stereoselective hydroboration into pyrrolidine derivatives 7 (Scheme 3). Straightforward functional‐group transformations led to the hydrochlorides 9 of anisomycin (Scheme 3). The (2R) series provided the hydrochloride (2R)‐ 9 of the natural occurring enantiomer, whereas the (2S) series furnished the antipode (2S)‐ 9 . The overall sequence to the natural product involved ten steps with eight purified intermediates and afforded an overall yield of 8%. Our stereochemically divergent approach to this type of hydroxylated pyrrolidines is highly flexible and should easily allow preparation of many analogues.  相似文献   

17.
The reactions of 4,4′‐dimethoxythiobenzophenone ( 1 ) with (S)‐2‐methyloxirane ((S)‐ 2 ) and (R)‐2‐phenyloxirane ((R)‐ 6 ) in the presence of a Lewis acid such as BF3?Et2O, ZnCl2, or SiO2 in dry CH2Cl2 led to the corresponding 1 : 1 adducts, i.e., 1,3‐oxathiolanes (S)‐ 3 with Me at C(5), and (S)‐ 7 and (R)‐ 8 with Ph at C(4) and C(5), respectively. A 1 : 2 adduct, 1,3,6‐dioxathiocane (4S,8S)‐ 4 and 1,3‐dioxolane (S)‐ 9 , respectively, were formed as minor products (Schemes 3 and 5, Tables 1 and 2). Treatment of the 1 : 1 adduct (S)‐ 3 with (S)‐ 2 and BF3?Et2O gave the 1 : 2 adduct (4S,8S)‐ 4 (Scheme 4). In the case of the enolized thioketone 1,3‐diphenylprop‐1‐ene‐2‐thiol ( 10 ) with (S)‐ 2 and (R)‐ 6 in the presence of SiO2, the enesulfanyl alcohols (1′Z,2S)‐ 11 and (1′E,2S)‐ 11 , and (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 , respectively, as well as a 1,3‐oxathiolane (S)‐ 14 were formed (Schemes 6 and 8). In the presence of HCl, the enesulfanyl alcohols (1′Z,2S)‐ 11 , (1′Z,2S)‐ 13 , (1′E,2S)‐ 13 , (1′Z,1R)‐ 15 , and (1′E,1R)‐ 15 cyclize to give the corresponding 1,3‐oxathiolanes (S)‐ 12 , (S)‐ 14 , and (R)‐ 16 , respectively (Schemes 7, 9, and 10). The structures of (1′E,2S)‐ 11 , (S)‐ 12 , and (S)‐ 14 were confirmed by X‐ray crystallography (Figs. 13). These results show that 1,3‐oxathiolanes can be prepared directly via the Lewis acid‐catalyzed reactions of oxiranes with non‐enolizable thioketones, and also in two steps with enolized thioketones. The nucleophilic attack of the thiocarbonyl or enesulfanyl S‐atom at the Lewis acid‐complexed oxirane ring proceeds with high regio‐ and stereoselectivity via an Sn 2‐type mechanism.  相似文献   

18.
The (3R,5′R,6′R)‐ and (3R,5′R,6′S)‐capsanthol‐3′‐one (=3,6′‐dihydroxy‐β,κ‐caroten‐3′‐one; 4 and 5 , resp.) were reduced by different complex metal hydrides containing organic ligands. The ratio of the thus obtained diastereoisomeric (3′S)‐capsanthols 2 and 3 or (3′R)‐capsanthols 6 and 7 , respectively, was investigated. Four complex hydrides showed remarkable stereoselectivity and produced the (3′R,6′S)‐capsanthol ( 6 ) in 80 – 100% (see Table 1). The starting materials and the products were characterized by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

19.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

20.
C2‐Chiral 1,1,4,4‐tetraaryl‐ or 1,1,4,4‐tetraalkyl‐substituted butanetetraols have been conveniently synthesized via arylation or alkylation of unprotected diethyl (2R,3R)‐ and (2S,3S)‐tartrates with Grignard reagent. The chiral 1,1,4,4‐tetrasubstituted butanetetraols were characterized by IR, 1H‐ and 13C‐NMR, as well as LC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号