首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence imaging enables the uniquely sensitive observation of functional‐ and molecular‐recognition events in living cells. However, only a limited range of biological processes have been subjected to imaging because of the lack of a design strategy and difficulties in the synthesis of biosensors. Herein, we report a facile synthesis of emission‐tunable and predictable Seoul‐Fluors, 9‐aryl‐1,2‐dihydrolopyrrolo[3,4‐b]indolizin‐3‐ones, with various R1 and R2 substituents by coinage‐metal‐catalyzed intramolecular 1,3‐dipolar cycloaddition and subsequent palladium‐mediated C H activation. We also showed that the quantum yields of Seoul‐Fluors are controlled by the electronic nature of the substituents, which influences the extent of photoinduced electron transfer. On the basis of this understanding, we demonstrated our design strategy by the development of a Seoul‐Fluor‐based chemosensor 20 for reactive oxygen species that was not accessible by a previous synthetic route.  相似文献   

2.
The synthesis of a series of NiII–salen‐based complexes with the general formula of [Ni(H2L)] (H4L=R2N,N′‐bis[R1‐5‐(4′‐benzoic acid)salicylidene]; H4L1: R2=2,3‐diamino‐2,3‐dimethylbutane and R1=H; H4L2: R2=1,2‐diaminoethane and R1=tert‐butyl and H4L3: R2=1,2‐diaminobenzene and R1=tert‐butyl) is presented. Their electronic structure and self‐assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self‐assembly through hydrogen bonding. In addition, other substituents, that is, tert‐butyl and diamine bridges (2,3‐diamino‐2,3‐dimethylbutane, 1,2‐diaminobenzene or 1,2‐diaminoethane), were used to tune the two‐dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self‐assemble into three different 2D nanoarchitectures at the solid–liquid interface on graphite. Two structures are porous and one is close‐packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized  相似文献   

3.
The design and synthesis of a phthalocyanine – Gd‐DOTA conjugate is presented to open the way to novel molecular theranostics, combining the properties of MRI contrast imaging with photodynamic therapy. The rational design of the conjugate integrates isomeric purity of the phthalocyanine core substitution, suitable biocompatibility with the use of polyoxo water‐solubilizing substituents, and a convergent synthetic strategy ended by the use of click chemistry to graft the Gd‐DOTA moiety to the phthalocyanine. Photophysical and photochemical properties, contrast imaging experiments and preliminary in vitro investigations proved that such a combination is relevant and lead to a new type of potential theranostic agent.  相似文献   

4.
A systematic study of carbo‐butadiene motifs not embedded in an aromatic carbo‐benzene ring is described. Dibutatrienylacetylene (DBA) targets R1?C(R)?C?C?C(Ph)?C≡C?C(Ph)?C?C?C(R)?R2 are devised, in which R is C≡CSiiPr3 and R1 and R2 are R, H, or 4‐X‐C6H4, with the latter including three known representatives (X: H, NMe2, or NH2). The synthesis method is based on the SnCl2‐mediated reduction of pentaynediols prepared by early or late divergent strategies; the latter allows access to a OMe–NO2 push–pull diaryl‐DBA. If R1 and R2 are H, an over‐reduced dialkynylbutatriene (DAB) with two allenyl caps was isolated instead of the unsubstituted DBA. If R1=R2=R, the tetraalkynyl‐DBA target was obtained, along with an over‐reduced DBA product with a 12‐membered 1,2‐alkylidene‐1H2,2H2carbo‐cyclobutadiene ring. X‐ray crystallography shows that all of the acyclic DBAs adopt a planar transtransoidtrans configuration. The maximum UV/Vis absorption wavelength is found to vary consistently with the overall π‐conjugation extent and, more intriguingly, with the π‐donor character of the aryl X substituents, which varies consistently with the first (reversible) reduction potential and first (irreversible) oxidation peak, as determined by voltammetry.  相似文献   

5.
A convenient diastereoselective synthesis of diisopropyl (2R,3R)‐3‐{{{(R/S)‐aryl[(diethoxyphosphinyl)amino]methyl}hydroxyphosphinyl}oxy}‐2‐hydroxybutanedioate through Mannich‐type reactions is reported. The reactions take place under mild conditions in good yields, and this makes it possible to introduce various substituents at the α‐position to the P‐atom of α‐aminophosphonates. The chiral diisopropyl (4R,5R)‐2‐chloro‐1,3,2‐dioxaphospholane‐4,5‐dicarboxylate ( 3 ) was found to be a good phosphonylating agent in this stereoselective reaction.  相似文献   

6.
Gas‐phase C―C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1)]+ (where phen = 1,10‐phenanthroline), were formed by electrospray ionization. Upon collision‐induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1)]+, which undergoes gas‐phase ion‐molecule reactions (IMR) with acetate esters CH3COOR2 to yield the acetate complex [(phen)Ni (OOCCH3)]+ and a C―C coupling product R1‐R2. These Ni(II)/phenanthroline‐mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3, sp2, or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3sp3 or sp2sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C―C bond coupling step.  相似文献   

7.
Constrained peptidomimetic scaffolds are of considerable interest for the design of therapeutically useful analogues of bioactive peptides. We present the single‐step cyclization of (S)‐ or (R)‐α‐hydroxy‐β2‐ or α‐substituted‐α‐hydroxy‐β2, 2‐amino acids already incorporated within oligopeptides to 5‐aminomethyl‐oxazolidine‐2,4‐dione (Amo) rings. These scaffolds can be regarded as unprecedented β2‐ or β2, 2‐homo‐Freidinger lactam analogues, and can be equipped with a proteinogenic side chain at each residue. In a biomimetic environment, Amo rings act as inducers of extended, semi‐bent or folded geometries, depending on the relative stereochemistry and the presence of α‐substituents.  相似文献   

8.
Palladium and platinum complexes containing a sulfur‐functionalised N‐heterocyclic carbene (S‐NHC) chelate ligand have been synthesised. The absolute conformations of these novel organometallic S‐NHC chelates were determined by X‐ray structural analyses and solution‐phase 2D 1H–1H ROESY NMR spectroscopy. The structural studies revealed that the phenyl substituents on the stereogenic carbon atoms invariably take up the axial positions on the Pd‐C‐S coordination plane to afford a skewed five‐membered ring structure. All of the chiral complexes are structurally rigid and stereochemically locked in a chiral ring conformation that is either (Rs,S,R)‐λ or (Ss,R,R)‐δ in both the solid state and solution.  相似文献   

9.
1,2,3,4‐Tetrasubstituted cyclopentadienes and indene derivatives with identical or different substituents were obtained in good to excellent isolated yields through a zirconocene‐ and CuCl‐mediated intermolecular coupling process. This synthetic procedure involved three organic partners, including one CH2I2, and two different or identical alkynes. Two alkynes or one diyne undergo Cp2ZrII‐mediated (Cp=η5‐C5H5) pair‐selective reductive coupling to afford the corresponding zirconacyclopentadiene derivatives, which react, in the presence of CuCl and 1,3‐dimethyl‐3,4,5,6‐tetrahydro‐2(1 H)‐pyrimidinone (DMPU), with CH2I2 through intermolecular followed by intramolecular coupling to afford the cyclopentadiene derivatives. An application of the prepared tetrasubstituted cyclopentadiene derivatives was demonstrated by the facile synthesis of the corresponding zirconocene complexes [(4RCp)2ZrCl2] and [(4RCp)2ZrR′2] (R′=Me, Et, or nBu). The unique 1,2,3,4‐tetrasubstituted cyclopentadiene ligands and the corresponding metallocenes are expected to have further applications in organometallic chemistry and organic synthesis.  相似文献   

10.
Phthalazinone derivatives were designed as optical probes for one‐ and two‐photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron‐donating aromatic groups such as N,N‐diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N‐methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty‐two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two‐photon microscopic imaging of mouse brain slices.  相似文献   

11.
17O NMR spectra for 35 ortho‐, para‐, and meta‐substituted phenyl tosylates (phenyl 4‐methylbenzenesulfonates), 4‐CH3‐C6H4SO2OC6H4‐X, at natural abundance in acetonitrile at 50 °C were recorded. The 17O NMR chemical shifts, δ(17O), of the sulfonyl (SO2) and the single‐bonded phenoxy (OPh) oxygens for para and meta derivatives correlated well with dual substituent parameter treatment using the Taft inductive, σI, and resonance, σºR, constants. The influence of ortho substituents on the sulfonyl oxygen and the single‐bonded phenoxy oxygen chemical shifts, δ(17O), was found to be nicely described by the Charton equation: δ(17O)ortho = δ(17O)H + ρIσI + ρRσ°R + δEsB when the data treatment was performed separately for electron‐donating +R substituents and electron‐attracting ?R substituents. Electron‐attracting meta and para substituents in the phenyl moiety caused deshielding while the electron‐donating meta, para and ortho +R substituents produce shielding effects on the sulfonyl (SO2) and single‐bonded phenoxy (OPh) oxygens. The influence of ortho inductive and resonance effects in the case of +R substituents was found to be approximately twice higher than the corresponding influence from the para position. Due to the steric effect of ortho substituents a decrease in shielding of the oxygens at the sulfonyl group (δEsB > 0, EsB < 0) was detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
An asymmetric synthesis of (4R,8R)‐4,8‐dimethyldecanal, the most active component of natural tribolure, was achieved through an asymmetric methylation as a key step and chiral‐pool strategy. Natural tribolure is a mixture of four stereoisomers, (4R,8R)/(4R,8S)/(4S,8R)/(4S,8S), and their ratio is 4/4/1/1. However, the (4R,8R)‐isomer is the most active one. Based on a chiral‐pool strategy, we used a recycled chiral molecular (R)‐4‐(Benzyloxy)‐3‐methylbutanal that we exploited in our previous article. After executing a C5 + C5 + C2 synthetic plan, the target molecule was obtained in nine linear steps and in 36.8% overall yield.  相似文献   

13.
In this article, we present our results concerning new C2‐symmetric bisphosphinites with a (1R,2R)‐1,2‐bis([1,1′: 3′,1″‐terphenyl]‐5′‐yl)ethane backbone. For the given chirality of the backbone, derivatives with aromatic and aliphatic substituents at the donor P‐atoms were synthesized with moderate yields in a straightforward manner. These compounds were evaluated in the Pd0‐catalyzed enantioselective allylic alkylations (up to 67% ee).  相似文献   

14.
A series of twelve new 7‐chloro‐5‐[(o‐ and p‐R1)phenyl]‐1‐R2‐3H‐[1,4] benzo‐diazepin‐2‐ones, which have possible pharmacological properties were synthesized. The synthesis of all the final compounds was carried out by four steps. The structure of all final products was corroborated by ir, 1H nmr, 13C nmr and ms, and have been obtained in 35‐94% yield.  相似文献   

15.
Herein, we present a strategy for the formation of 2‐fluoro‐1,3‐diene derivatives via rhodium‐catalyzed direct C(sp2)—C(sp2) cross‐coupling of gem‐difluoroalkenes and acrylamides. By merging Rh(III)‐catalyzed C(sp2)–H bond activation and nucleophilic addition/F‐elimination of gem‐difluoroalkene, an efficient defluorinative vinylation reaction is uncovered, which leads to the generation of 2‐fluoro‐1,3‐dienes in moderate to good yields with excellent stereoselectivity under mild conditions. Preliminary mechanistic study suggests unique effects of fluorine substituents which allow the reactivity profile not observed with the congeners bearing heavier halides.  相似文献   

16.
Above‐room‐temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high‐temperature polar magnetic oxides in the corundum‐derived A2BB′O6 family, exemplified by the non‐centrosymmetric (R3) Ni3TeO6‐type Mn2+2Fe3+Mo5+O6, which shows strong ferrimagnetic ordering with TC=337 K and demonstrates structural polarization without any ions with (n?1)d10ns0, d0, or stereoactive lone‐pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 μC cm?2) and non‐centrosymmetry confirmed directly by second harmonic generation. These results motivate new directions in the search for practical magnetoelectric/multiferroic materials.  相似文献   

17.
The asymmetric synthesis of two naturally occurring 5‐hydroxy‐γ‐butyrolactones, (4R,5R)‐5‐hydroxy‐4‐decanolide ( 1a ) and (?)‐muricatacin ( 2 ), is described using a general alkyne‐mediated strategy. The key steps involved are Sonogashira coupling for the desired carbon‐chain extension followed by Sharpless asymmetric dihydroxylation to construct the hydroxy‐lactone framework.  相似文献   

18.
The chemical synthesis of deuterated isomeric 6,7‐dihydroxydodecanoic acid methyl esters 1 and the subsequent metabolism of esters 1 and the corresponding acids 1a in liquid cultures of the yeast Saccharomyces cerevisiae was investigated. Incubation experiments with (6R,7R)‐ or (6S,7S)‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid methyl ester ((6R,7R)‐ or (6S,7S)‐(6,7‐2H2)‐ 1 , resp.) and (±)‐threo‐ or (±)‐erythro‐6,7‐dihydroxy(6,7‐2H2)dodecanoic acid ((±)‐threo‐ or (±)‐erythro‐(6,7‐2H2)‐ 1a , resp.) elucidated their metabolic pathway in yeast (Tables 1–3). The main products were isomeric 2H‐labeled 5‐hydroxydecano‐4‐lactones 2 . The absolute configuration of the four isomeric lactones 2 was assigned by chemical synthesis via Sharpless asymmetric dihydroxylation and chiral gas chromatography (Lipodex ® E). The enantiomers of threo‐ 2 were separated without derivatization on Lipodex ® E; in contrast, the enantiomers of erythro‐ 2 could be separated only after transformation to their 5‐O‐(trifluoroacetyl) derivatives. Biotransformation of the methyl ester (6R,7R)‐(6,7‐2H2)‐ 1 led to (4R,5R)‐ and (4S,5R)‐(2,5‐2H2)‐ 2 (ratio ca. 4 : 1; Table 2). Estimation of the label content and position of (4S,5R)‐(2,5‐2H2)‐ 2 showed 95% label at C(5), 68% label at C(2), and no 2H at C(4) (Table 2). Therefore, oxidation and subsequent reduction with inversion at C(4) of 4,5‐dihydroxydecanoic acid and transfer of 2H from C(4) to C(2) is postulated. The 5‐hydroxydecano‐4‐lactones 2 are of biochemical importance: during the fermentation of Streptomyces griseus, (4S,5R)‐ 2 , known as L‐factor, occurs temporarily before the antibiotic production, and (?)‐muricatacin (=(4R,5R)‐5‐hydroxy‐heptadecano‐4‐lactone), a homologue of (4R,5R)‐ 2 , is an anticancer agent.  相似文献   

19.
A systematic study on ring‐closing metathesis with Grubbs II catalyst to cembranoid macrocycles is described. Acyclic terpenoids with a functional group X in the homoallylic position relative to an RCM active terminus and substituents R, R1 directly attached to the other terminal double bond were prepared from geraniol derived trienes and fragments that are based on bromoalkenes and dimethyl malonate. Such terpenoids were suitable precursors, despite the presence of competing double bonds in their framework. The size of R and R1 is crucial for successful macrocyclization. Whereas small alkyl substituents at the double bond directed the RCM towards six‐membered ring formation, cross metathesis leading to dimers dominated for bulkier alkyl groups. A similar result was obtained for precursors without functional group X. In the case of unsymmetrically substituted terpenoid precursor (R=Et, R1=Me) with homoallylic OTBS or OMe group, the RCM could be controlled towards formation of macrocyclic cembranoids, which were isolated with excellent E‐selectivity. The role of the substituents was further studied by quantum chemical calculations of simplified model substrates. Based on these results a mechanistic rationale is proposed.  相似文献   

20.
By introducing a disposable activating substituent at C‐3, the asymmetric 1,4‐addition to a notoriously unreactive 2‐substituted chromenone was achieved with high levels of (2R)‐stereoselectivity in the presence of a chiral CuI‐phosphoramidite complex as a catalyst. This paved the way for an efficient and conceptually novel synthesis of (R,R,R)‐α‐tocopherol from readily available starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号