首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

2.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

3.
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α‐cyclodextrin with azobenzene and the host‐stabilized charge‐transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible‐light irradiation, and chemical redox.  相似文献   

4.
5.
6.
Insider dealing : Self‐assembled hosts applied as “molecular flasks” can alter and control the reactivity and properties of molecules encapsulated within their well‐defined, confined spaces. A variety of functional hosts of differing sizes, shapes, and utility have been prepared by using the facile and modular concepts of self‐assembly.

  相似文献   


7.
Two molecules of cavitand tetraboronic acid and four molecules of various bis(catechol) linkers self‐assemble into capsules through the formation of eight dynamic boronic ester bonds. Each capsule has a different cavity size depending on the linker used, and shows particular guest encapsulation selectivity. A chiral capsule made up of the cavitand and a chiral bis(catechol) linker was also constructed. This capsule induces supramolecular chirality with respect to a prochiral biphenyl guest by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

8.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

9.
10.
11.
12.
13.
14.
A new and versatile, crown ether appended, chiral supergelator has been designed and synthesized based on the bis‐urea motif. The introduction of a stereogenic center improved its gelation ability significantly relative to its achiral analogue. This low‐molecular‐weight gelator forms supramolecular gels in a variety of organic solvents. It is sensitive to multiple chemical stimuli and the sol–gel phase transitions can be reversibly triggered by host–guest interactions. The gel can be used to trap enzymes and release them on demand by chemical stimuli. It stabilizes the microparticles in Pickering emulsions so that enzyme‐catalyzed organic reactions can take place in the polar phase inside the microparticles, the organic reactants diffusing through the biphasic interface from the surrounding organic phase. Because of the higher interface area between the organic and polar phases, enzyme activity is enhanced in comparison with simple biphasic systems.  相似文献   

15.
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake.  相似文献   

16.
Five dioxynaphthalene[38]‐crown‐10 ( DNP38C10 ) macrocycles bearing one, two, three, or four allyl moieties have been synthesized and their ability to spontaneously self‐assemble with methyl viologen to form [2]pseudorotaxanes has been evaluated. Association constants between methyl viologen and several of the allyl‐functionalized DNP38C10 macrocycles are found to be comparable to that of methyl viologen and unfunctionalized DNP38C10 , however, the enthalpic and entropic factors that underlie overall binding free energy vary systematically with increasing allyl substitution. These variations are explained through a combination of solution phase and solid‐state analysis of the macrocycles and their complexes. The utility of endowing DNP38C10 macrocycles with allyl moieties is further demonstrated by the ease with which they can be functionalized through thiol‐ene click chemistry.  相似文献   

17.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

18.
Triquinacene is a concave tricyclic hydrocarbon with diverse photoreactivity. In the cavity of an electron‐accepting molecular host, triquinacene was specifically photooxidized at the peripheral allylic position into an alcohol, 1‐hydroxytriquinacene, via guest‐to‐host electron transfer. The unusual reactivity stems from the extremely electron‐deficient triazine panel ligand of the host cage, which allows the cage to function as a good electron acceptor. Thus, self‐assembled coordination cages can serve not only as molecular‐sized reaction vessels but also function electronically as redox media. Dissolved molecular oxygen is indispensable for the photoreaction and immediately traps a photogenerated radical.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号