首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple but effective copper‐catalyzed borylation of aryl halides, including electron‐rich and sterically hindered aryl bromides, with alkoxy diboron reagents occurs under mild conditions (see scheme). Preliminary DFT studies of the mechanism suggest that σ‐bond metathesis between a copper–boryl intermediate and the aryl halide generates the aryl boronate product.

  相似文献   


2.
A zinc‐catalyzed combined C? X and C? H borylation of aryl halides using B2pin2 (pin=OCMe2CMe2O) to produce the corresponding 1,2‐diborylarenes under mild conditions was developed. Catalytic C? H bond activation occurs ortho to the halide groups if such a site is available or meta to the halide if the ortho position is already substituted. This method thus represents a novel use of a group XII catalyst for C? H borylation. This transformation does not proceed via a free aryne intermediate, but a radical process seems to be involved.  相似文献   

3.
The ability to cross‐couple secondary alkyl centers is fraught with a number of problems, including difficult reductive elimination, which often leads to β‐hydride elimination. Whereas catalysts have been reported that provide decent selectivity for the expected (non‐rearranged) cross‐coupled product with aryl or heteroaryl oxidative‐addition partners, none have shown reliable selectivity with five‐membered‐ring heterocycles. In this report, a new, rationally designed catalyst, Pd‐PEPPSI‐IHeptCl, is demonstrated to be effective in selective cross‐coupling reactions with secondary alkyl reagents across an impressive variety of furans, thiophenes, and benzo‐fused derivatives (e.g., indoles, benzofurans), in most instances producing clean products with minimal, if any, migratory insertion for the first time.  相似文献   

4.
5.
Monocoordinated palladium catalysts derived from sterically hindered, electron‐rich phosphines or N‐heterocyclic carbenes have revolutionized the Suzuki–Miyaura coupling reaction. The emergence of organotrifluoroborates has provided important new perspectives for the organoboron component of these reactions. In combination, these two components prove to be extraordinarily powerful partners for cross‐coupling reactions.  相似文献   

6.
Reacting in the 'Ni'ck of time : The title reaction is realized by using an isolated NiII complex ( 1 ). The catalysis tolerates a wide range of important functional groups that are often incompatible with Grignard reagents in cross‐coupling reactions.

  相似文献   


7.
The new monophosphine ligand HandaPhos has been identified such that when complexed in a 1:1 ratio with Pd(OAc)2, enables Pd‐catalyzed cross‐couplings to be run using ≤1000 ppm of this pre‐catalyst. Applications to Suzuki–Miyaura reactions involving highly funtionalized reaction partners are demonstrated, all run using environmentally benign nanoreactors in water at ambient temperatures. Comparisons with existing state‐of‐the‐art ligands and catalysts are discussed herein.  相似文献   

8.
Seeing the sites : The Suzuki–Miyaura reaction of substrates containing multiple coupling sites has been performed in a directed manner through the reactivity modulation of the boron moiety (see scheme). Several other strategies are also discussed.

  相似文献   


9.
The preparation of imidazolium and benzimidazolium salts with hydroxyl or carboxylate functions has been achieved using straightforward synthetic pathways. These salts in combination with palladium(II) acetate give active catalytic systems for Suzuki reaction. A comparative study has been performed, which has revealed that both the heterocycle and the functional group are important for the catalytic activity and stability of the catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
As one of the most powerful and versatile methods for the construction of carbon–carbon bonds, the Suzuki–Miyaura cross‐coupling reaction has attracted great attention over the past three decades. In recent years, a huge amount of interest has been focused on the development of ligand‐free Suzuki–Miyaura reaction systems, which have the advantages of low cost, mild reaction conditions, and easy operation. So far, a number of ligand‐free Suzuki–Miyaura reaction systems have been developed by using simple palladium salts, nanopalladium, or supported palladium catalysts. In this account, we will review our recent research on the oxygen‐promoted ligand‐free Suzuki–Miyaura reaction. Interestingly, the oxygen‐promoting effect has been observed in different reaction media, including polyethylene glycol, organic/water mixed solvents and pure water. The oxygen‐promoted reaction systems demonstrate high efficiency for the construction of biaryls.

  相似文献   


13.
Triarylmethanes, which are valuable structures in materials, sensing and pharmaceuticals, have been synthesized starting from methyl phenyl sulfone as an inexpensive and readily available template. The three aryl groups were installed through two sequential palladium‐catalyzed C? H arylation reactions, followed by an arylative desulfonation. This method provides a new synthetic approach to multisubstituted triarylmethanes using readily available haloarenes and aryl boronic acids, and is also valuable for the preparation of unexplored triarylmethane‐based materials and pharmaceuticals.  相似文献   

14.
Ni‐based precatalysts for the Suzuki–Miyaura reaction have potential chemical and economic advantages compared to commonly used Pd systems. Here, we compare Ni precatalysts for the Suzuki–Miyaura reaction supported by the dppf ligand in 3 oxidation states, 0, I and II. Surprisingly, at 80 °C they give similar catalytic activity, with all systems generating significant amounts of NiI during the reaction. At room temperature a readily accessible bench‐stable NiII precatalyst is highly active and can couple synthetically important heterocyclic substrates. Our work conclusively establishes that NiI species are relevant in reactions typically proposed to involve exclusively Ni0 and NiII complexes.  相似文献   

15.
Polymeric nanocomposite@Pd is one of the crown jewels for the catalysis of cross‐coupling reactions. This Pd nanocomposite on various polymeric supports has been well established to catalyze cross‐coupling reactions, but its preparation supported on the surface of nanofibers has been largely overlooked. Herein, we report the preparation of a poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) nanofiber‐supported N‐heterocyclic carbene–Pd complex. The first step involves the preparation of PAA/PVA nanofibers using the electrospinning process. The second step comprises the reaction of water‐soluble poly(ethylene glycol)‐imidazole with modified PAA/PVA nanofibers followed by introduction of PdCl2 to achieve successfully the desired nanocomposite. The catalytic activity of this nanocomposite was examined in the expeditious synthesis of biaryl compounds using the Suzuki–Miyaura cross‐coupling reaction under mild reaction conditions. The composite offers multiple features such as good hydrophilic properties, high surface area, admirable potential in repeatability tests and being recyclable for several runs without significant loss in its activity under the optimum reaction conditions. Our results showed the superior applicability of this novel nanocatalyst in terms of conversion reaction, yields and turnover frequencies. The structure of the catalyst was characterized using a variety of techniques.  相似文献   

16.
17.
18.
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N‐heterocyclic carbenes are studied. [Ag4(L1)4](PF6)4, [Pd(L1)Cl](PF6), [Pt(L1)Cl](PF6) (L1=3‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)‐1‐(pyrimidin‐2‐yl)‐1H‐imidazolylidene), [Pd2(L2)2Cl2](PF6)2, and [Pd(L2)2](PF6)2 (L2=1‐butyl‐3‐((1‐(pyridin‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X‐ray crystallography. The silver complex [Ag4(L1)4](PF6)4 consists of a Ag4 zigzag chain. The complexes [Pd(L1)Cl](PF6) and [Pt(L1)Cl](PF6), containing a nonsymmetrical NCN ′ pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd2(L2)2Cl2](PF6)2 consists of two palladium centers with CN2Cl coordination mode, whereas the palladium in [Pd(L2)2](PF6)2 is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki–Miyaura cross coupling reactions of aryl bromides and 1,1‐dibromo‐1‐alkenes in neat water under an air atmosphere.  相似文献   

19.
While attractive, the iron‐catalyzed coupling of arylboron reagents with alkyl halides typically requires expensive or synthetically challenging diphosphine ligands. Herein, we show that primary and secondary alkyl bromides and chlorides, as well as benzyl and allyl halides, can be coupled with arylboronic esters, activated with alkyllithium reagents, by using very simple iron‐based catalysts. The catalysts used were either adducts of inexpensive and widely available diphosphines or, in a large number of cases, simply [Fe(acac)3] with no added co‐ ligands. In the former case, preliminary mechanistic studies highlight the likely involvement of iron(I)–phosphine intermediates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号