首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient electrocatalysts derived from metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) have been developed. However, the subsequent pyrolysis is often needed owing to their poor intrinsic electrical conductivity, leading to undesirable structure changes and destruction of the original fine structure. Now, hybrid electrocatalysts were formed by self‐assembling pristine covalent organic polymer (COP) with reduced graphene oxide (rGO). The electrical conductivity of the hybridized COP/rGO materials is increased by more than seven orders of magnitude (from 3.06×10?9 to 2.56×10?1 S m?1) compared with pure COPs. The ORR activities of the hybrid are enhanced significantly by the synergetic effect between highly active COP and highly conductive rGO. This COP/rGO hybrid catalyst exhibited a remarkable positive half‐wave (150 mV).  相似文献   

2.
Non‐noble metal‐based metal–organic framework (MOF)‐derived electrocatalysts have recently attracted great interest in the oxygen evolution reaction (OER). Here we report a facile synthesis of nickel‐based bimetallic electrocatalysts derived from 2D nanosheet‐assembled nanoflower‐like MOFs. The optimized morphologies and large Brunauer–Emmett–Teller (BET) surface area endow FeNi@CNF with efficient OER performance, where the aligned nanosheets can expose abundant active sites and benefit electron transfer. The complex nanoflower morphologies together with the synergistic effects between two metals attributed to the OER activity of the Ni‐based bimetallic catalysts. The optimized FeNi@CNF afforded an overpotential of 356 mV at a current density of 10 mA cm?2 with a Tafel slope of 62.6 mV dec?1, and also exhibited superior durability with only slightly degradation after 24 hours of continuous operation. The results may inspire the use of complex nanosheet‐assembled nanostructures to explore highly active catalysts for various applications.  相似文献   

3.
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.  相似文献   

4.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF‐based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF‐based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF‐based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF‐based ORR electrocatalysts are also discussed.  相似文献   

5.
It remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal–organic frameworks (MOFs) have been synthesized based on a novel mixed‐ligand strategy to afford high‐content (1.76 wt %) single‐atom (SA) iron‐implanted N‐doped porous carbon (FeSA‐N‐C) via pyrolysis. Thanks to the single‐atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized FeSA‐N‐C exhibits excellent oxygen reduction activity and stability, surpassing almost all non‐noble‐metal catalysts and state‐of‐the‐art Pt/C, in both alkaline and more challenging acidic media. More far‐reaching, this MOF‐based mixed‐ligand strategy opens a novel avenue to the precise fabrication of efficient single‐atom catalysts.  相似文献   

6.
Binding water molecules to polar sites in covalent organic frameworks (COFs) is inevitable, but the corresponding solvent effects in electrocatalytic process have been largely overlooked. Herein, we investigate the solvent effects on COFs for catalyzing the oxygen reduction reaction (ORR). Our designed COFs incorporated different kinds of nitrogen atoms (imine N, pyridine N, and phenazine N), enabling tunable interactions with water molecules. These interactions play a crucial role in modulating electronic states and altering the catalytic centers within the COFs. Among the synthesized COFs, the one with pyridine N atoms exhibits the highest activity, with characterized by a half-wave potential of 0.78 V and a mass activity of 0.32 A mg−1, which surpass those from other metal-free COFs. Theoretical calculations further reveal that the enhanced activity can be attributed to the stronger binding ability of *OOH intermediates to the carbon atoms adjacent to the pyridine N sites. This work sheds light on the significance of considering solvent effects on COFs in electrocatalytic systems, providing valuable insights into their design and optimization for improved performance.  相似文献   

7.
Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells.  相似文献   

8.
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   

9.
Inspired by copper‐based oxygen reduction biocatalysts, we have studied the electrocatalytic behavior of a Cu‐based MOF (Cu‐BTT) for oxygen reduction reaction (ORR) in alkaline medium. This catalyst reduces the oxygen at the onset (Eonset) and half‐wave potential (E1/2) of 0. 940 V and 0.778 V, respectively. The high halfway potential supports the good activity of Cu‐BTT MOF. The high ORR catalytic activity can be interpreted by the presence of nitrogen‐rich ligand (tetrazole) and the generation of nascent copper(I) during the reaction. In addition to the excellent activity, Cu‐BTT MOF showed exceptional stability too, which was confirmed through chronoamperometry study, where current was unchanged up to 12 h. Further, the 4‐electrons transfer of ORR kinetics was confirmed by hydrodynamic voltammetry. The oxygen active center namely copper(I) generation during ORR has been understood by the reduction peak in cyclic voltammetry as well in the XPS analysis.  相似文献   

10.
Single site catalysts(SSCs) are a new type of heterogeneous catalysts formed by isolated metal atoms supported on kinds of substrates. SSCs have shown great potential for energy conversion and storage in recent years, especially for oxygen reduction reactions(ORR). Typically, SSCs are confined on the substrate by strong chemical interactions, such as coordination bonds. Therefore, the surface chemical environment and porous properties of the supports are crucial to the performance of SSCs. In recent years, COFs have become excellent candidates for preparing SSCs as they can precisely assemble monomers into highly ordered crystalline porous materials with a fine structure and definite components. In this review, we not only summarize the characteristics and advantages of COFs based SSCs, but also highlight the applications of COFs constructed from different single active sites for ORR in recent years. Finally, challenges in practical application, feasible strategies and perspectives are proposed for the of COFs based SSCs.  相似文献   

11.
12.
Metal–organic frameworks (MOFs) are a class of promising materials for diverse heterogeneous catalysis, but they are usually not directly employed for oxygen evolution electrocatalysis. Most reports focus on using MOFs as templates to in situ create efficient electrocatalysts through annealing. Herein, we prepared a series of Fe/Ni‐based trimetallic MOFs (Fe/Ni/Co(Mn)‐MIL‐53 accordingly to the Material of Institute Lavoisier) by solvothermal synthesis, which can be directly adopted as highly efficient electrocatalysts. The Fe/Ni/Co(Mn)‐MIL‐53 shows a volcano‐type oxygen evolution reaction (OER) activity as a function of compositions. The optimized Fe/Ni2.4/Co0.4‐MIL‐53 can reach a current density of 20 mA cm?2 at low overpotential of 236 mV with a small Tafel slope of 52.2 mV dec?1. In addition, the OER performance of these MOFs can be further enhanced by directly being grown on nickel foam (NF).  相似文献   

13.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

14.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

15.
We have synthesized a porous Mo‐based composite obtained from a polyoxometalate‐based metal–organic framework and graphene oxide (POMOFs/GO) using a simple one‐pot method. The MoO2@PC‐RGO hybrid material derived from the POMOFs/GO composite is prepared at a relatively low carbonization temperature, which presents a superior activity for the hydrogen‐evolution reaction (HER) in acidic media owing to the synergistic effects among highly dispersive MoO2 particles, phosphorus‐doped porous carbon, and RGO substrates. MoO2@PC‐RGO exhibits a very positive onset potential close to that of 20 % Pt/C, low Tafel slope of 41 mV dec?1, high exchange current density of 4.8×10?4 A cm?2, and remarkable long‐term cycle stability. It is one of the best high‐performance catalysts among the reported nonprecious metal catalysts for HER to date.  相似文献   

16.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen‐rich metal–organic framework (Zn‐MOF‐74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of ?0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at ?0.55 V vs. RHE, one of the highest values among NPC‐based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost‐effective alternatives to noble‐metal CO2RR electrocatalysts for practical applications.  相似文献   

17.
The replacement of scarce and expensive platinum species poses a challenge in fuel‐cell development. The design and synthesis of a novel type of CoII–N4 macrocyclic complex, [CoN4], based on the phenanthroline–indole macrocyclic ligand (PIM) is reported. This unique ligand allows the formation of mono‐ and dinuclear complexes with defined active sites that facilitate the direct four‐electron reduction of oxygen. Electrochemical measurements revealed that the [CoN4]/C (20 wt %) catalysts have a high activity and long‐term stability for the oxygen‐reduction reaction (ORR) under alkaline conditions, similar to the Pt/C catalyst. These structurally well‐defined complexes represent a nonprecious alternative to platinum species for future fuel‐cell applications.  相似文献   

18.
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24 ) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.  相似文献   

19.
Cobalt disulfide (CoS2) has been explored as attractive electrocatalyst for oxygen evolution reaction (OER). However, bulk CoS2 sheets have limited catalytic activity due to low exposure of active sites. Herein, through an in-situ vulcanization approach, CoS2 nanoparticles are embedded into bipyridine-containing covalent organic polymer (BP-COP). The as-prepared nanocomposite CoS2@BP-COP exhibits high catalytic activity toward OER with an ultra-low overpotential of 270 mV (vs. RHE) at a current density of 10 mA cm−2, a small Tafel slope of 36 mV dec−1, and an excellent durability for 24 h without decay. The surface of CoS2 is partially converted into CoOOH to form CoS2/CoOOH as active sites under OER conditions. CoS2@BP-COP displays superior OER catalytic activity to CoS2 nanosheets and commercially available RuO2 under the same conditions. The outstanding OER performance activity of CoS2@BP-COP could be attributed to the uniform and small particle sizes of CoS2/CoOOH distributed in BP-COP.  相似文献   

20.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2?(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm?2 at 0.55 V vs. RHE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号