首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemical Reactions of Cyclopentadienylbis(ethene)rhodium with Benzene Derivatives During UV irradiation of [CpRh(C2H4)2] ( 1 ) (Cp = η5‐C5H5) in hexane in the presence of hexamethylbenzene the di‐ and trinuclear arene bridged complexes [(CpRh)2(μ‐η3 : η3‐C6Me6)] ( 3 ) and [(CpRh)33‐η2 : η2 : η2‐C6Me6)] ( 4 ) are formed besides known [CpRh(η4‐C6Me6)] ( 2 ). It was shown by a separate experiment that 3 besides small amounts of 4 is formed by attack of photochemically from 1 arising CpRh fragments at the free double bond of the η4‐bonded benzene ring in 2 . Irradiation of 1 in the presence of diphenyl (C12H10) affords the compounds [(CpRh)2(μ‐η3 : η3‐C12H10)] ( 5 ) and [(CpRh)33‐η2 : η2 : η2‐C12H10)] ( 6 ) as analogues of 3 and 4 , in the presence of triptycene (C20H14) only [(CpRh)2(μ‐η3 : η3‐C20H14)] ( 7 ) is obtained; the bridging in 5 , 6 , and 7 always occurs via the same six‐membered ring of the corresponding ligand system. During the photochemical reaction of 1 in the presence of styrene (C8H8) substitution of the ethene ligands by the vinyl groups with formation of [CpRh(C2H4)(η2‐C8H8)] ( 8 ) and known [CpRh(η2‐C8H8)2] ( 9 ) is observed exclusively. The new complexes were characterized analytically and spectroscopically, in the case of 3 also by X‐ray structure analysis.  相似文献   

2.
Self-assembly processes of the highly reduced bowl-shaped corannulene generated by the chemical reduction with a binary combination of alkali metals, namely Li–Rb, have been investigated by variable-temperature 1H and 7Li NMR spectroscopy. The formation of several unique mixed metal sandwich products based on tetrareduced corannulene, C20H10 4– (1 4–), has been revealed followed by investigation of their dynamic transformations in solutions. Analysis of NMR data allowed to propose the mechanism of stepwise alkali metal substitution as well as to identify experimental conditions for the isolation of intermediate and final supramolecular products. As a result, two new triple-decker aggregates with a mixed Li–Rb core, [{Rb(THF)2}2]//[Li3Rb2(C20H10)2{Li+(THF)}] (2) and [{Rb(diglyme)}2]//[Li3Rb3(C20H10)2(diglyme)2]·0.5THF (3·0.5THF), have been crystallized and structurally characterized. The Li3Rb2-product has an open coordination site at the sandwich periphery and thus is considered transient on the way to the Li3Rb3-sandwich having the maximized intercalated alkali metal content. Next, the formation of the LiRb5 self-assembly with 1 4– has been identified by 7Li NMR as the final step in a series of dynamic transformations in this system. This product was also isolated and crystallographically characterized to confirm the LiRb5 core. Notably, all sandwiches have their central cavities, located in between the hub-sites of two C20H10 4– decks, occupied by an internal Li+ ion which exhibits the record high negative shift (ranging from –21 to –25 ppm) in 7Li NMR spectra. The isolation of three novel aggregates having different Li–Rb core compositions allowed us to look into the origin of the unusual 7Li NMR shifts at the molecular level. The discussion of formation mechanisms, dynamic transformations as well as unique electronic structures of these remarkable mixed alkali metal organometallic self-assemblies is provided and supported by DFT calculations.  相似文献   

3.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

4.
Coordination polymers (CPs) have attracted increasing interest in recent years. In this work, two new CPs, namely poly[[aquabis(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylatophenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}(μ‐formato‐κ3O:O,O′)dicadmium(II)] monohydrate], {[Cd2(C16H9O7)(HCO2)(C10H8N2)2(H2O)]·H2O}n ( 1 ), and poly[[(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}manganese(II)] sesquihydrate], {[Mn(C16H10O7)(C10H8N2)]·1.5H2O}n ( 2 ), have been prepared using the tricarboxylic acid 5‐[(4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylic acid and 2,2′‐bipyridine under hydrothermal conditions. CP 1 displays a two‐dimensional layer structure which is further extended into a three‐dimensional (3D) supramolecular structure via intermolecular π–π interactions, while CP 2 shows a different 3D supramolecular structure extended from one‐dimensional ladder chains by intermolecular π–π interactions. In addition, the solid‐state luminescence spectra of 1 and 2 were studied at room temperature.  相似文献   

5.
A structurally diverse range of lipophilic, cationic η6‐arene η5‐cyclopentadienyl (η5‐Cp*) full‐sandwich complexes of ruthenium(II) have been prepared and structurally characterized by Fourier‐transform IR and NMR spectroscopy, electrospray mass spectrometry, and elemental microanalyses. Computational experiments incorporating the Hartree–Fock theory and the second‐order Møller–Plesset perturbation theory predict each complex to possess a uniform δ+ electrostatic potential, with the cationic charge of the [RuCp*]+ moiety completely delocalizing throughout the molecular structure of each metallocene. In vitro cytotoxicity studies demonstrate these delocalized lipophilic cations to be potent growth inhibitors of eleven unique tumorigenic cell lines, while exhibiting significantly lower levels of toxicity towards both a normal human fibroblast and a mouse macrophage cell line. Single‐crystal X‐ray structural determinations are additionally reported for five complexes, [Ru(η6‐C6H5(CH2)2CH3)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C6H5CO2CH2CH3)(η5‐C5(CH3)5)]BF4, [Ru(η6‐C10H8)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C14H10)(η5‐C5(CH3)5)]BPh4, and [Ru(η6‐C16H10)(η5‐C5(CH3)5)]BPh4.  相似文献   

6.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

7.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

8.
Triclinic single crystals of [(C6H10)(NH3)2][Ni(H2O)4C6H2(COO)4]·4H2O have been prepared in aqueous solution at 55 °C. Space group (Nr. 2), a = 691.23(6), b = 924.84(5), c = 1082.43(7) pm, α = 74.208(6)°, β = 75.558(7)°, γ = 68.251(6)°, V = 0.60985(7) nm3, Z = 1. The Nickel(II) species, located on a crystallographic inversion centre, is coordinated in a trans‐octahedral fashion by two oxygen atoms stemming from the centrosymmetric pyromellitate anions and four from water molecules (Ni–O 205.82(12) – 208.11(13) pm). The connection between Ni2+ and [C6H2(COO)4)]4? leads to infinite chain‐like polyanions extending parallel to with {Ni(H2O)4[C6H2(COO)4]2?}n composition. [(C6H10)(NH3)2]2+‐cations are accomodated between the chains, compensating for the negative charge of the polyanions. Thermogravimetric analysis in air showed that the loss of water of crystallisation occurs in two steps between 102 and 206 °C, corresponding to the loss of 6 and 2 water molecules per formula unit, respectively. The dehydrated sample was stable between 206 and 353 °C. Further decomposition yielded nickel(II) oxide (NiO).  相似文献   

9.
The ligand‐unsupported accommodation of extra metal moieties in a sandwich complex is reported. Although it has been considered that the metal‐capacity of a metal sheet sandwich complex is strictly limited by the size of cyclic unsaturated hydrocarbon ligands, the M?M edge bonds in a metal sheet sandwich complex provide a ligand‐unsupported docking site for extra metal moieties, allowing expansion of metal‐capacity in sandwich complexes. The metal sheet sandwich complex [Pd44‐C8H8)(μ4‐C9H9)]+, in which the ligand‐based metal capacity is full in terms of the usage of all C=C moieties of the smaller carbocyclic ligand C8H8 in coordination, can accommodate extra M0{P(OPh)3}2 (M=Pd, Pt) moieties without coordinative assistance by either the C9H9 or the C8H8 ligand.  相似文献   

10.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

11.
Two new CoII coordination polymers (CPs), namely, catena‐poly[[[(5‐amino‐2,4,6‐tribromobenzene‐1,3‐dicarboxylato‐κO)aquacobalt(II)]‐bis[μ‐1,3‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N:N′]] 4.75‐hydrate], {[Co(C8H2Br3NO4)(C14H14N4)2(H2O)]·4.75H2O}n, (1), and poly[(μ‐5‐amino‐2,4,6‐tribromobenzene‐1,3‐dicarboxylato‐κ2O1:O3)[μ‐1,2‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N:N′]cobalt(II)], [Co(C8H2Br3NO4)(C14H14N4)]n, (2), have been synthesized successfully by the assembly of multifunctional 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) and CoII ions in the presence of the flexible isomeric bis(imidazole) ligands 1,3‐bis(imidazol‐1‐ylmethyl)benzene (mbix) and 1,2‐bis(imidazol‐1‐ylmethyl)benzene (obix). The isomeric mbix and obix ligands have a big influence on the structures of CPs (1) and (2). CP (1) is composed of chains of nanometre‐sized elliptical rings, in which the CoII atom exhibits a distorted octahedral coordination geometry and ATBIP2− acts as a monodentate ligand. Two adjacent chains are interlinked by π–π stacking interactions and hydrogen bonds, resulting in a supramolecular double chain. Hydrogen‐bonded R86(16) rings extend adjacent supramolecular double chains into a two‐dimensional supramolecular layer. Halogen bonding and a hydrogen‐bonded R42(8) ring further link the two‐dimensional supramolecular layers, leading to the formation of a three‐dimensional supramolecular network. The CoII ion in CP (2) is tetracoordinated, exhibiting a distorted tetrahedral configuration. The ATBIP2− ligand exhibits a bis(monodentate) coordination bridging mode, linking adjacent CoII ions into zigzag chains, which are further bridged by the auxiliary bridging obix ligand, resulting in a two‐dimensional (4,4) topological network. Interlayer hydrogen and halogen–halogen bonding further extend the two‐dimensional layers into a three‐dimensional supramolecular network. A detailed analysis of the solid‐state UV–Vis–NIR diffuse‐reflectance spectra of (1) and (2) indicates that a wide optical band gap exists in both (1) and (2). CP (1) exhibits an irreversible dehydration–rehydration behaviour.  相似文献   

12.
Reactivity studies of dicarba[2]ferrocenophanes and also their corresponding ring‐opened oligomers and polymers have been conducted in order to provide mechanistic insight into the processes that occur under the conditions of their thermal ring‐opening polymerisation (ROP) (300 °C). Thermolysis of dicarba[2]ferrocenophane rac‐[Fe(η5‐C5H4)2(CHPh)2] (rac‐ 14 ; 300 °C, 1 h) does not lead to thermal ROP. To investigate this system further, rac‐ 14 was heated in the presence of an excess of cyclopentadienyl anion, to mimic the postulated propagating sites for thermally polymerisable analogues. This afforded acyclic [(η5‐C5H5)Fe(η5‐C5H4)‐CH2Ph] ( 17 ) through cleavage of both a Fe?Cp bond and also the C?C bond derived from the dicarba bridge. Evidence supporting a potential homolytic C?C bond cleavage pathway that occurs in the absence of ring‐strain was provided through thermolysis of an acyclic analogue of rac‐ 14 , namely [(η5‐C5H5)Fe(η5‐C5H4)(CHPh)2‐C5H5] ( 15 ; 300 °C, 1 h), which also afforded ferrocene derivative 17 . This reactivity pathway appears general for post‐ROP species bearing phenyl substituents on adjacent carbons, and consequently was also observed during the thermolysis of linear polyferrocenylethylene [Fe(η5‐C5H4)2(CHPh)2]n ( 16 ; 300 °C, 1 h), which was prepared by photocontrolled ROP of rac‐ 14 at 5 °C. This afforded ferrocene derivative [Fe(η5‐C5H4CH2Ph)2] ( 23 ) through selective cleavage of the ?H(Ph)C?C(Ph)H? bonds in the dicarba linkers. These processes appear to be facilitated by the presence of bulky, radical‐stabilising phenyl substituents on each carbon of the linker, as demonstrated through the contrasting thermal properties of unsubstituted linear trimer [(η5‐C5H5)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H5)] ( 29 ) with a ?H2C?CH2? spacer, which proved significantly more stable under analogous conditions. Evidence for the radical intermediates formed through C?C bond cleavage was detected through high‐resolution mass spectrometric analysis of co‐thermolysis reactions involving rac‐ 14 and 15 (300 °C, 1 h), which indicated the presence of higher molecular weight species, postulated to be formed through cross‐coupling of these intermediates.  相似文献   

13.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

14.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

15.
Reaction of the flexible phenolic carboxylate ligand 2‐(3,5‐dicarboxylbenzyloxy)benzoic acid (H3L) with nickel salts in the presence of 1,2‐bis(pyridin‐4‐yl)ethylene (bpe) leads to the generation of a mixture of the two complexes under solvolthermal conditions, namely poly[[aqua[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3}nickel(II)] dimethylformamide hemisolvate monohydrate], {[Ni(C16H10O7)(C12H10N2)(H2O)]·0.5C3H7NO·H2O}n or {[Ni(HL)(bpe)(H2O)]·0.5DMF·H2O}n, 1 , and poly[[diaquatris[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]bis{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ2O1:O5}nickel(II)] dimethylformamide disolvate hexahydrate], {[Ni2(C16H10O7)2(C12H10N2)3(H2O)2]·2C3H7NO·6H2O}n or {[Ni2(HL)2(bpe)3(H2O)2]·2DMF·6H2O}n, 2 . In complex 1 , the NiII centres are connected by the carboxylate and bpe ligands to form two‐dimensional (2D) 4‐connected (4,4) layers, which are extended into a 2D+2D→3D (3D is three‐dimensional) supramolecular framework. In complex 2 , bpe ligands connect to NiII centres to form 2D layers with Ni6(bpe)6 metallmacrocycles. Interestingly, 2D+2D→3D inclined polycatenation was observed between these layers. The final 5‐connected 3D self‐penetrating structure was generated through further connection of Ni–carboxylate chains with these inclined motifs. Both complexes were fully characterized by single‐crystal analysis, powder X‐ray diffraction analysis, FT–IR spectra, elemental analyses, thermal analysis and UV–Vis spectra. Notably, an interesting metal/ligand‐induced crystal‐to‐crystal transformation was observed between the two complexes.  相似文献   

16.
Accurate values for the energies of stacking interactions of nickel‐ and copper‐based six‐membered chelate rings with benzene are calculated at the CCSD(T)/CBS level. The results show that calculations made at the ωB97xD/def2‐TZVP level are in excellent agreement with CCSD(T)/CBS values. The energies of [Cu(C3H3O2)(HCO2)] and [Ni(C3H3O2)(HCO2)] chelates stacking with benzene are ?6.39 and ?4.77 kcal mol?1, respectively. Understanding these interactions might be important for materials with properties that are dependent on stacking interactions.  相似文献   

17.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

18.
The unusual reactivity of the newly synthesized β‐diketiminato cobalt(I) complexes, [(LDepCo)2] ( 2 a , LDep=CH[C(Me)N(2,6‐Et2C6H3)]2) and [LDippCo ? toluene] ( 2 b , LDipp=CH[CHN(2,6‐iPr2C6H3)]2), toward white phosphorus was investigated, affording the first cobalt(I) complexes [(LDepCo)2244‐P4)] ( 3 a ) and [(LDippCo)2244‐P4)] ( 3 b ) bearing the neutral cyclo‐P4 ligand with a rectangular‐planar structure. The redox chemistry of 3 a and 3 b was studied by cyclic voltammetry and their chemical reduction with one molar equivalent of potassium graphite led to the isolation of [(LDepCo)2244‐P4)][K(dme)4] ( 4 a ) and [(LDippCo)2244‐P4)][K(dme)4] ( 4 b ). Unexpectedly, the monoanionic Co2P4 core in 4 a and 4 b , respectively, contains the two‐electron‐reduced cyclo‐P42? ligand with a square‐planar structure and mixed‐valent cobalt(I,II) sites. The electronic structures of 3 a , 3 b , 4 a , and 4 b were elucidated by NMR and EPR spectroscopy as well as magnetic measurements and are in agreement with results of broken‐symmetry DFT calculations.  相似文献   

19.
Stable N‐heterocyclic carbene analogues of Thiele and Chichibabin hydrocarbons, [(IPr)(C6H4)(IPr)] and [(IPr)(C6H4)2(IPr)] ( 4 and 5 , respectively; IPr=C{N(2,6‐iPr2C6H3)}2CHCH), are reported. In a nickel‐catalyzed double carbenylation of 1,4‐Br2C6H4 and 4,4′‐Br2(C6H4)2 with IPr ( 1 ), [(IPr)(C6H4)(IPr)](Br)2 ( 2 ) and [(IPr)(C6H4)2(IPr)](Br)2 ( 3 ) were generated, which respectively afforded 4 and 5 as crystalline solids upon reduction with KC8. Experimental and computational studies support the semiquinoidal nature of 5 with a small singlet?triplet energy gap ΔES?T of 10.7 kcal mol?1, whereas 4 features more quinoidal character with a rather large ΔES?T of 25.6 kcal mol?1. In view of the low ΔES?T, 4 and 5 may be described as biradicaloids. Moreover, 5 has considerable (41 %) diradical character.  相似文献   

20.
Quantum chemical calculations using density functional theory at the BP86/TZ2P level have been carried out to determine the geometries and stabilities of Group 13 adducts [(PMe3)(EH3)] and [(PMe3)2(E2Hn)] (E=B–In; n=4, 2, 0). The optimized geometries exhibit, in most cases, similar features to those of related adducts [(NHCMe)(EH3)] and [(NHCMe)2(E2Hn)] with a few exceptions that can be explained by the different donor strengths of the ligands. The calculations show that the carbene ligand L=NHCMe (:C(NMeCH)2) is a significantly stronger donor than L=PMe3. The equilibrium geometries of [L(EH3)] possess, in all cases, a pyramidal structure, whereas the complexes [L2(E2H4)] always have an antiperiplanar arrangement of the ligands L. The phosphine ligands in [(PMe3)2(B2H2)], which has Cs symmetry, are in the same plane as the B2H2 moiety, whereas the heavier homologues [(PMe3)2(E2H2)] (E=Al, Ga, In) have Ci symmetry in which the ligands bind side‐on to the E2H2 acceptor. This is in contrast to the [(NHCMe)2(E2H2)] adducts for which the NHCMe donor always binds in the same plane as E2H2 except for the indium complex [(NHCMe)2(In2H2)], which exhibits side‐on bonding. The boron complexes [L2(B2)] (L=PMe3 and NHCMe) possess a linear arrangement of the LBBL moiety, which has a B?B triple bond. The heavier homologues [L2(E2)] have antiperiplanar arrangements of the LEEL moieties, except for [(PMe3)2(In2)], which has a twisted structure in which the PInInP torsion angle is 123.0°. The structural features of the complexes [L(EH3)] and [L2(E2Hn)] can be explained in terms of donor–acceptor interactions between the donors L and the acceptors EH3 and E2Hn, which have been analyzed quantitatively by using the energy decomposition analysis (EDA) method. The calculations predict that the hydrogenation reaction of the dimeric magnesium(I) compound L′MgMgL′ with the complexes [L(EH3)] is energetically more favorable for L=PMe3 than for NHCMe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号