首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study on the effects of Lewis or Brønsted acid co‐catalysts in gold‐catalyzed reactions was undertaken using representative reactions (O‐, N‐, and C‐nucleophilic additions to alkynes). Through these reactions, it was demonstrated that an acidic co‐catalyst can increase the catalyst turnover significantly, enabling practical reaction rates at competitive catalyst loadings (<1 mol %). Further investigation is currently underway to improve the understanding of the subtle principles underlying these experimental observations.  相似文献   

2.
Planar chirality remains an underutilized control element in asymmetric catalysis. Factors that have limited its broader application in catalysis include poor catalyst performance and difficulties associated with the economical production of enantiopure planar chiral compounds. The construction of planar chiral azolium salts that incorporate a sterically demanding iron sandwich complex is now reported. Applications of this new N‐heterocyclic carbene as both an organocatalyst and a ligand for transition‐metal catalysis demonstrate its unprecedented versatility and potential broad utility in asymmetric catalysis.  相似文献   

3.
The dual ability of gold salts to act as π‐ and σ Lewis acids has been exploited in a tandem self‐relay catalysis. Thus, triphenylphosphanegold(I) triflate mediated the intramolecular carbonyl addition of the amide functionality of homoprogargyl amides to a triple bond. The formation of a σ complex of the gold salt with the intermediate oxazine promoted a nucleophilic addition followed by a Petasis–Ferrier rearrangement. This tandem protocol, catalyzed by the same gold salt under the same reaction conditions, gave rise to the efficient synthesis of 2,3‐dihydropyridin‐4‐(1 H)‐ones, which contain a cyclic quaternary α‐amino acid unit. The asymmetric version was performed by generating the starting materials from the corresponding sulfinylimines.  相似文献   

4.
Supramolecular protein polymers : When a heme moiety was introduced to the surface of an apo‐cytochrome b562(H63C) mutant, supramolecular polymers formed through noncovalent heme–heme pocket interactions. The incorporation of a heme triad as a pivot molecule in the protein polymer further led to a two‐dimensional protein network structure, which was visualized by tapping‐mode atomic force microscopy (see picture).

  相似文献   


5.
The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.  相似文献   

6.
Domino reactions have received great attention as efficient synthetic methodologies for the construction of structurally complex molecules from simple materials in a single operation. Catalysts in domino reactions have also been well studied. In these reactions, a catalyst activates the substrate(s) only once, and the structure of the product is delineated at that time. Recently, the new concept of “tandem catalysis” in domino reactions, in which catalyst(s) sequentially activate more than two mechanistically distinct reactions, has been proposed. Tandem catalysis is categorized into three subclasses: orthogonal‐, auto‐, and assisted‐tandem catalyses. Auto‐tandem catalysis is defined as a process in which one catalyst promotes more than two fundamentally different reactions in a single reactor. An overview of recent and significant achievements in auto‐tandem catalysis is presented in this paper.  相似文献   

7.
Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small‐molecule recognition unit (Ni‐trisNTA) and the genetically encoded minimal protein His6‐10‐tag. High‐density protein tracing by SLAP was demonstrated. This technique allows super‐resolution fluorescence imaging and fulfills the necessary sampling criteria for single‐molecule localization‐based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).  相似文献   

8.
Homogeneous transition‐metal catalysis is a crucial technology for the sustainable preparation of valuable chemicals. The catalyst concentration is usually kept as low as possible, typically at mM or μM levels, and the effect of high catalyst concentration is hardly exploited because of solubility issues and the inherent unfavorable catalyst/substrate ratio. Herein, a self‐assembly strategy is reported which leads to local catalyst concentrations ranging from 0.05 M to 1.1 M , inside well‐defined nanospheres, whilst the overall catalyst concentration in solution remains at the conventional mM levels. We disclose that only at this high concentration, the gold(I) chloride is reactive and shows high selectivity in intramolecular C? O and C? C bond‐forming cyclization reactions.  相似文献   

9.
10.
11.
12.
A highly effective visible light‐promoted “radical‐type” coupling of N‐heteroarenes with aryldiazonium salts in water has been developed. The reaction proceeds at room temperature with [Ru(bpy)3]Cl2 ? 6 H2O as a photosensitizer and a commercial household light bulb as a light source. Pyridine and a variety of substituted pyridines are effective substrates under these reaction conditions, and only monosubstituted products are formed with different regioselectivities. Using aqueous formic acid as solvent, an array of xanthenes, thiazole, pyrazine, and pyridazine are compatible with this new arylation approach. The broad substrate scope, mild reaction conditions, and use of water as reaction solvent make this procedure a practical and environmentally friendly method for the synthesis of compounds containing aryl‐heteroaryl motifs.  相似文献   

13.
Supramolecular protein polymers consisting of cytochrome b562 monomers with heme covalently attached to the protein surface are presented by T. Hayashi and co‐workers in their Communication on page 1271 ff. Not only one‐dimensional hemoprotein fibers with submicrometer lengths have been prepared, but when a heme triad was added as a pivot molecule, two‐dimensional protein assembly networks resulted, which cover over 100 square micrometers.

  相似文献   


14.
A large family of bifunctional 1,2,3‐triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox‐robust metal complex, or a β‐cyclodextrin unit) has been synthesized by facile “click” chemistry and mildly coordinated to nanogold particles, thus providing stable water‐soluble gold nanoparticles (AuNPs) in the size range 3.0–11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence “turn‐on” assay, and the catalytic activity of the smallest triazole–AuNPs (core of 3.0 nm) is excellent for the reduction of 4‐nitrophenol in water.  相似文献   

15.
16.
17.
A series of main‐chain poly(amide‐triazole)s were prepared by copper(I)‐catalyzed alkyne–azide AABB‐type copolymerizatons between five structurally similar diacetylenes 1 – 5 with the same diazide 6 . The acetylene units in monomers 1 – 5 possessed different degrees of conformational flexibility due to the different number of intramolecular hydrogen bonds built inside the monomer architecture. Our study showed that the conformational freedom of the monomer had a profound effect on the polymerization efficiency and the thermoreversible gelation properties of the resulting copolymers. Among all five diacetylene monomers, only the one, that is, 1 ‐Py(NH)2 which possesses the pyridine‐2,6‐dicarboxamide unit with two built‐in intramolecular H bonds could produce the corresponding poly(amide‐triazole) Poly‐(PyNH)2 with a significantly higher degree of polymerization (DP) than other monomers with a lesser number of intramolecular H bonds. In addition, it was found that only this polymer exhibited excellent thermoreversible gelation ability in aromatic solvents. A self‐assembling model of the organogelating polymer Poly‐(PyNH)2 was proposed based on FTIR spectroscopy, XRD, and SEM analyses, in which H bonding, π–π aromatic stacking, hydrophobic interactions, and the structural rigidity of the polymer backbone were identified as the main driving forces for the polymer self‐assembly process.  相似文献   

18.
Environmentally friendly metal–organic frameworks (MOFs) have gained considerable attention for their potential use as heterogeneous catalysts. Herein, two CuI-based MOFs, namely, [Cu4Cl4L] ⋅ CH3OH ⋅ 1.5 H2O ( 1-Cl ) and [Cu4Br4L] ⋅ DMF ⋅ 0.5 H2O ( 1-Br ), were assembled with new functionalized thiacalix[4]arenes (L) and halogen anions X (X=Cl and Br) under solvothermal conditions. Remarkably, catalysts 1-Cl and 1-Br exhibit great stability in aqueous solutions over a wide pH range. Significantly, MOFs 1-Cl and 1-Br , as recycled heterogeneous catalysts, are capable of highly efficient catalysis for click reactions in water. The MOF structures, especially the exposed active CuI sites and 1D channels, play a key role in the improved catalytic activities. In particular, their catalytic activities in water are greatly superior to those in organic solvents or even in mixed solvents. This work proposes an attractive route for the design and self-assembly of environmentally friendly MOFs with high catalytic activity and reusability in water.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号