首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In eukaryotic cells helix‐distorting DNA lesions like cyclobutane pyrimidine dimers (CPDs) and 6–4 pyrimidine‐pyrimidone photoproducts (6–4 PPs) are efficiently removed by nucleotide excision repair (NER). NER is a multistep process where in the end, subsequent to replication over the gap, the remaining nick is sealed by a DNA ligase. Lig1 has been implicated as the major DNA ligase in NER. Recently, Lig3 has been implicated as a component of a NER subpathway that operates in dividing cells, but which becomes particularly important in nondividing cells. Here, we use DT40 cells and powerful gene targeting approaches for generating DNA ligase mutants to examine the involvement and contribution of Lig1 and Lig3 in NER using cell survival measured by colony formation, and repair kinetics of CPD by immunofluorescence microscopy and immuno‐slot‐blotting. Our results demonstrate an impressive and previously undocumented potential of Lig3 to substitute for Lig1 in removing helix‐distorting DNA lesions by NER in proliferating cells. We show for the first time in a clean genetic background a functional redundancy in NER between Lig1 and Lig3, which appears to be cell cycle independent and which is likely to contribute to the stability of vertebrate genomes.  相似文献   

4.
5.
DNA damage response plays a key role not only in maintaining genome integrity but also in mediating the antitumor efficacy of DNA‐damaging antineoplastic drugs. Herein, we report the rational design and evaluation of a PtIV anticancer prodrug inhibiting nucleotide excision repair (NER), one of the most pivotal processes after the formation of cisplatin‐induced DNA damage that deactivates the drug and leads to drug resistance in the clinic. This dual‐action prodrug enters cells efficiently and causes DNA damage while simultaneously inhibiting NER to promote apoptotic response. The prodrug is strongly active against the proliferation of cisplatin‐resistant human cancer cells with an up to 88‐fold increase in growth inhibition compared with cisplatin, and the prodrug is much more active than a mixture of cisplatin and an NER inhibitor. Our study highlights the importance of targeting downstream pathways after the formation of Pt‐induced DNA damage as a novel strategy to conquer cisplatin resistance.  相似文献   

6.
DNA damage repair through the nucleotide excision repair (NER) pathway is one of the major reasons for the decreased antitumor efficacy of platinum‐based anticancer drugs that have been widely applied in the clinic. Inhibiting the intrinsic NER function may enhance the antitumor activity of cisplatin and conquer cisplatin resistance. Herein, we report the design, optimization, and application of a self‐assembled lipid nanoparticle (LNP) system to simultaneously deliver a cisplatin prodrug together with siRNA targeting endonuclease xeroderma pigmentosum group F (XPF), a crucial component in the NER pathway. The LNP is able to efficiently encapsulate both the platinum prodrug and siRNA molecules with a tuned ratio. Both platinum prodrug and XPF‐targeted siRNA are efficiently carried into cells and released; the former damages DNA and the latter specifically downregulates both mRNA and protein levels of XPF to potentiate the platinum drug, leading to enhanced expression levels of apoptosis markers and improved cytotoxicity in both cisplatin‐sensitive and ‐resistant human lung cancer cells. Our results demonstrate an effective approach to utilize a multi‐targeted nanoparticle system that can specifically silence an NER‐related gene to promote apoptosis induced by cisplatin, especially in cisplatin‐refractory tumors.  相似文献   

7.
Programmed self‐assembly of nucleic acids (DNA and RNA) is an active research area as it promises a general approach for nanoconstruction. Whereas DNA self‐assembly has been extensively studied, RNA self‐assembly lags much behind. One strategy to boost RNA self‐assembly is to adapt the methods of DNA self‐assembly for RNA self‐assembly because of the chemical and structural similarities of DNA and RNA. However, these two types of molecules are still significantly different. To enable the rational design of RNA self‐assembly, a thorough examination of their likes and dislikes in programmed self‐assembly is needed. The current work begins to address this task. It was found that similar, two‐stranded motifs of RNA and DNA lead to similar, but clearly different nanostructures.  相似文献   

8.
9.
Heterodimeric peptides linked by disulfide bonds are attractive drug targets. However, their chemical assembly can be tedious, time‐consuming, and low yielding. Inspired by the cellular synthesis of pro‐insulin in which the two constituent peptide chains are expressed as a single‐chain precursor separated by a connecting C‐peptide, we have developed a novel chemically cleavable bis‐linker tether which allows the convenient assembly of two peptide chains as a single “pro”‐peptide on the same solid support. Following the peptide cleavage and post‐synthetic modifications, this bis‐linker tether can be removed in one‐step by chemical means. This method was used to synthesize a drug delivery‐cargo conjugate, TAT‐PKCi peptide, and a two‐disulfide bridged heterodimeric peptide, thionin (7‐19)‐(24‐32R), a thionin analogue. To our knowledge, this is the first report of a one‐pot chemically cleavable bis‐linker strategy for the facile synthesis of cross‐bridged two‐chain peptides.  相似文献   

10.
11.
Herein, a Förster resonance energy transfer system was designed, which consisted of CdSe/ZnS quantum dots donor and mCherry fluorescent protein acceptor. The quantum dots and the mCherry proteins were conjugated to permit Förster resonance energy transfer. Capillary electrophoresis with fluorescence detection was used for the analyses for the described system. The quantum dots and mCherry were sequentially injected into the capillary, while the real‐time fluorescence signal of donor and acceptor was simultaneously monitored by two channels with fixed wavelength detectors. An effective separation of complexes from free donor and acceptor was achieved. Results showed quantum dots and hexahistidine tagged mCherry had high affinity and the assembly was affected by His6‐mCherry/quantum dot molar ratio. The kinetics of the self‐assembly was calculated using the Hill equation. The microscopic dissociation constant values for out of‐ and in‐capillary assays were 10.49 and 23.39 μM, respectively. The capillary electrophoresis with fluorescence detection that monitored ligands competition assay further delineated the different binding capacities of histidine containing peptide ligands for binding sites on quantum dots. This work demonstrated a novel approach for the improvement of Förster resonance energy transfer for higher efficiency, increased sensitivity, intuitionistic observation, and low sample requirements of the in‐capillary probing system.  相似文献   

12.
13.
Facile growth of CuS nanowires through self‐assembly and their application as building blocks for near‐infrared light‐responsive functional films have been demonstrated. It is found that DNA is a key factor in preparing the CuS material with defined nanostructure. An exclusive oriented self‐aggregate growth mechanism is proposed for the growth of the nanowires, which might have important implications for preparing advanced, sophisticated nanostructures based on DNA nanotechnology. By employing the hydrophilic CuS nanowire as an optical absorber and thermosensitive nanogel as guest reservoir inside alginate film, a new platform for the release of functional molecules has been set up. In vitro studies have shown that the hybrid film possesses excellent biocompatibility and the release rate of chemical molecules from the film could be controlled with high spatial and temporal precision. Our novel approach and the resulting outstanding combination of properties may advance both the fields of DNA nanotechnology and light‐responsive devices.  相似文献   

14.
15.
Programming cells to sense multiple inputs and activate cellular signal transduction cascades is of great interest. Although this goal has been achieved through the engineering of genetic circuits using synthetic biology tools, a nongenetic and generic approach remains highly demanded. Herein, we present an aptamer‐controlled logic receptor assembly for modulating cellular signal transduction. Aptamers were engineered as “robotic arms” to capture target receptors (c‐Met and CD71) and a DNA logic assembly functioned as a computer processor to handle multiple inputs. As a result, the DNA assembly brings c‐Met and CD71 into close proximity, thus interfering with the ligand–receptor interactions of c‐Met and inhibiting its functions. Using this principle, a set of logic gates was created that respond to DNA strands or light irradiation, modulating the c‐Met/HGF signal pathways. This simple modular design provides a robust chemical tool for modulating cellular signal transduction.  相似文献   

16.
17.
Micron-sized latex particles with single-stranded DNA grafted to the surface have been used as a model system to study DNA mediated interactions. A new approach of tuning the interactions between particles is proposed, which allows for a gradual change of the assembly rate for fixed physical conditions of a solution by combining hybridizing "linker" DNA with nonhybridizing "neutral" DNA. The effect of linker/neutral DNA ratios on particle assembly kinetics and aggregate morphology has been experimentally investigated for a range of ionic strengths. The conditions for controlling various assembly morphologies have been identified, and the involved attractive and repulsive interactions have been described and explained for the proposed approach. The calculated attractive-repulsive behavior is in good agreement with experimental results. The described approach provides general perspectives for further fine-tuning DNA-mediated assembly systems.  相似文献   

18.
19.
Surface‐addressable nanostructures of linearly π‐conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid‐phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiphiles and report their reversible self‐assembly into surface‐engineered vesicles with enhanced emission. DNA‐directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence‐specific DNA hybridization. This system could be converted to a supramolecular light‐harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.  相似文献   

20.
Polymer–drug conjugates are promising as strategies for drug delivery, because of their high drug loading capacity and low premature release profile. However, the preparation of these conjugates is often tedious. In this paper, we report an efficient method for polymer–drug conjugates using an ultrafast and reversible click reaction in a post‐polymerization functionalization strategy. The reaction is based on the rapid condensation of boronic acid functionalities with salicylhydroxamates. The polymer, bearing the latter functionality, has been designed such that the reaction with boronic acid bearing drugs induces an in situ self‐assembly of the conjugates to form well‐defined nanostructures. We show that this method is not only applicable for molecules with an intrinsic boronic acid group, but also for the other molecules that can be linked to aryl boronic acids through a self‐immolative linker. The linker has been designed to cause traceless release of the attached drug molecules, the efficiency of which has been demonstrated through intracellular delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号