首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
《中国化学》2018,36(1):25-30
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne‐terminated fluorinated copolymer (Pn) of 2,2,2‐trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra‐phenylethylene (TPE) through click chemistry to form azo polymer (TPE‐azo‐Pn). The core‐shell nanoprobes (TPE‐P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self‐assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.  相似文献   

2.
19F magnetic resonance imaging (MRI) probes that can detect biological phenomena such as cell dynamics, ion concentrations, and enzymatic activity have attracted significant attention. Although perfluorocarbon (PFC) encapsulated nanoparticles are of interest in molecular imaging owing to their high sensitivity, activatable PFC nanoparticles have not been developed. In this study, we showed for the first time that the paramagnetic relaxation enhancement (PRE) effect can efficiently decrease the 19F NMR/MRI signals of PFCs in silica nanoparticles. On the basis of the PRE effect, we developed a reduction‐responsive PFC‐encapsulated nanoparticle probe, FLAME‐SS‐Gd3+ (FSG). This is the first example of an activatable PFC‐encapsulated nanoparticle that can be used for in vivo imaging. Calculations revealed that the ratio of fluorine atoms to Gd3+ complexes per nanoparticle was more than approximately 5.0×102, resulting in the high signal augmentation.  相似文献   

3.
Reversible addition‐fragmentation chain transfer polymerization was employed to synthesize a set of copolymers of styrene (PS) and 2,3,4,5,6‐pentafluorostyrene (PPFS), as well as block copolymers with tert‐butyl acrylate (PtBA)‐b‐PS‐co‐PPFS, with control over molecular weight and polydispersity. It was found that the copolymerization of styrene and PFS allowed for the preparation of gradient copolymers with opposite levels of monomer consumption, depending on the feed ratio. Conversion to amphiphilic block copolymers, PAA‐b‐(PS‐co‐PPFS), by removing the protecting groups was followed by fitting with monomethoxy poly(ethylene glycol) chains. Solution‐state assembly and intramicellar crosslinking afforded shell crosslinked knedel‐like (SCK) block copolymer nanoparticles. These fluorinated nanoparticles (ca. 20 nm diameters) were studied as potential magnetic resonance imaging (MRI) contrast agents based on the 19F‐nuclei; however, it was found that packaging of the hydrophobic fluorinated polymers into the core domain restricted the mobility of the chains and prohibited 19F NMR spectroscopy when the particles were dispersed in water without an organic cosolvent. Packing of perflouro‐15‐crown‐5‐ether (PFCE) into the polymer micelle was demonstrated with good uptake efficiency; however, it was necessary to swell the core with a good solvent (DMSO) to increase the mobility and observe the 19F NMR signal of the PFCE. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1023–1037, 2009  相似文献   

4.
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging‐guided focused tumor therapy. In this study, indocyanine green (ICG), a near‐infrared (NIR) imaging agent and perfect NIR light absorber for laser‐mediated photothermal therapy, was successfully incorporated into superparamagnetic Fe3O4@mSiO2 core–shell nanoparticles to combine the merit of NIR/magnetic resonance (MR) bimodal imaging properties with NIR photothermal therapy. The resultant nanoparticles were homogenously coated with poly(allylamine hydrochloride) (PAH) to make the surface of the composite nanoparticles positively charged, which would enhance cellular uptake driven by electrostatic interactions between the positive surface of the nanoparticles and the negative surface of the cancer cell. A high biocompatibility of the achieved nanoparticles was demonstrated by using a cell cytotoxicity assay. Moreover, confocal laser scanning microscopy (CLSM) observations indicated excellent NIR fluorescent imaging properties of the ICG‐loaded nanoparticles. The relatively high r2 value (171.6 mM ?1 s?1) of the nanoparticles implies its excellent capability as a contrast agent for MRI. More importantly, the ICG‐loaded nanoparticles showed perfect NIR photothermal therapy properties, thus indicating their potential for simultaneous cancer diagnosis as highly effective NIR/MR bimodal imaging probes and for NIR photothermal therapy of cancerous cells.  相似文献   

5.
Multifunctional NaGdF4:Yb3+,Er3+,Nd3+@NaGdF4:Nd3+ core–shell nanoparticles (called Gd:Yb3+,Er3+,Nd3+@Gd:Nd3+ NPs) with simultaneously enhanced near‐infrared (NIR)‐visible (Vis) and NIR‐NIR dual‐conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core–shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy‐transfer processes, Nd3+→Yb3+→Er3+ and Nd3+→Yb3+, respectively. The effects of Nd3+ concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd3+ content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb3+,Er3+,Nd3+@Gd:20 % Nd3+ NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core–shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.  相似文献   

6.
Herein, we report the synthesis of biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles (NPs) for simultaneous fluorescence‐surface‐enhanced Raman scattering (F‐SERS) bimodal imaging and drug delivery. Stable Raman signals were created by typical SERS tags that were composed of Ag NPs for optical enhancement, a reporter molecule of 4‐mercaptopyridine (4‐Mpy) for a spectroscopic signature, and a silica shell for protection. A further coating of mesoporous titania (mTiO2) on the SERS tags offered high loading capacity for a fluorescence dye (flavin mononucleotide) and an anti‐cancer drug (doxorubicin (DOX)), thereby endowing the material with fluorescence‐imaging and therapeutic functions. The as‐prepared F‐SERS dots exhibited strong fluorescence when excited by light at 460 nm whilst a stable, characteristic 4‐Mpy SERS signal was detected when the excitation wavelength was changed to longer wavelength (632.8 nm), both in solution and after incorporation inside living cells. Their excellent biocompatibility was demonstrated by low cytotoxicity against MCF‐7 cells, even at a high concentration of 100 μg mL?1. In vitro cell cytotoxicity confirmed that DOX‐loaded F‐SERS dots had a comparable or even greater therapeutic effect compared with the free drug, owing to the increased cell‐uptake, which was attributed to the possible endocytosis mechanism of the NPs. To the best of our knowledge, this is the first proof‐of‐concept investigation on a multifunctional nanomedicine that possessed a combined capacity for fast and multiplexed F‐SERS labeling as well as drug‐loading for cancer therapy.  相似文献   

7.
Specific turn‐on detection of enzyme activities is of fundamental importance in drug discovery research, as well as medical diagnostics. Although magnetic resonance imaging (MRI) is one of the most powerful techniques for noninvasive visualization of enzyme activity, both in vivo and ex vivo, promising strategies for imaging specific enzymes with high contrast have been very limited to date. We report herein a novel signal‐amplifiable self‐assembling 19F NMR/MRI probe for turn‐on detection and imaging of specific enzymatic activity. In NMR spectroscopy, these designed probes are “silent” when aggregated, but exhibit a disassembly driven turn‐on signal change upon cleavage of the substrate part by the catalytic enzyme. Using these 19F probes, nanomolar levels of two different target enzymes, nitroreductase (NTR) and matrix metalloproteinase (MMP), could be detected and visualized by 19F NMR spectroscopy and MRI. Furthermore, we have succeeded in imaging the activity of endogenously secreted MMP in cultured media of tumor cells by 19F MRI, depending on the cell lines and the cellular conditions. These results clearly demonstrate that our turn‐on 19F probes may serve as a screening platform for the activity of MMPs.  相似文献   

8.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

9.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) contrast agents inside MSNs, was developed. The nanoparticles were labeled with fluorescent dyes and functionalized with small molecule-based ligands for active targeting. This drug delivery system facilitated the monitoring of the biodistribution of the drug carrier by dual modal imaging (NIR/19F MRI). Furthermore, we demonstrated targeted drug delivery and cellular imaging by the conjugation of nanoparticles with folic acid. An anticancer drug (doxorubicin, DOX) was loaded in the pores of folate-functionalized MSNs for intracellular drug delivery. The release rates of DOX from the nanoparticles increased under acidic conditions, and were favorable for controlled drug release to cancer cells. Our results suggested that MSNs may serve as promising 19F MRI-traceable drug carriers for application in cancer therapy and bio-imaging.  相似文献   

10.
Responsive or smart magnetic resonance imaging (MRI) contrast agents are molecular sensors that alter the MRI signal upon changes in a particular parameter in their microenvironment. Consequently, they could be exploited for visualization of various biochemical events that take place at molecular and cellular levels. In this study, a set of dual‐frequency calcium‐responsive MRI agents are reported. These are paramagnetic, fluorine‐containing complexes that produce remarkably high MRI signal changes at the 1H and 19F frequencies at varying Ca2+ concentrations. The nature of the processes triggered by Ca2+ was revealed, allowing a better understanding of these complex systems and their further improvement. The findings indicate that these double‐frequency tracers hold great promise for development of novel functional MRI methods.  相似文献   

11.
Oleic acid stabilized superparamagnetic iron oxide nanoparticles (SPION) were selected as the cores for fabrication of sub‐50‐nm monodisperse single‐loaded SPION@SiO2 core–shell nanostructures. Parameters that influence the formation of SPION@SiO2 in the water‐in‐oil reverse microemulsion system have been systematically investigated. The sufficiently high concentration of well‐dispersed SPION, together with an appropriately low injection rate of tetraethoxysilane, were found to be the keys to efficiently prevent the homogeneous nucleation of silica and obtain a high‐quality single‐loaded core–shell nanocomposite. A more detailed mechanism for incorporating oleic acid capped inorganic functional nanoparticles into silica is proposed on the basis of previous reports and our new experimental results. Finally, the as‐synthesized SPION@SiO2 nanospheres are exploited as an MRI‐enhanced contrast agent, and their contrast effect in solution is tested by using a clinical MRI instrument.  相似文献   

12.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

13.
The local symmetry and local magnetic properties of 6 nm‐sized, bimetallic, cyanide‐bridged CsNiCr(CN)6 coordination nanoparticles 1 and 8 nm‐sized, trimetallic, CsNiCr(CN)6@CsCoCr(CN)6 core–shell nanoparticles 2 were studied by X‐ray absorption spectroscopy (XAS) and X‐ray magnetic circular dichroism (XMCD). The measurements were performed at the NiII, CoII, and CrIII L2,3 edges. This study revealed the presence of distorted NiII sites located on the particle surface of 1 that account for the uniaxial magnetic anisotropy observed by SQUID measurements. For the core–shell particles, a combination of the exchange anisotropy between the core and the shell and the pronounced anisotropy of the CoII ions is the origin of the large increase in coercive field from 120 to 890 Oe on going from 1 to 2 . In addition, XMCD allows the relative orientation of the magnetic moments throughout the core–shell particles to be determined. While for the bimetallic particles of 1 , alignment of the magnetic moments of CrIII ions with those of NiII ions leads to uniform magnetization, in the core–shell particles 2 the magnetic moments of the isotropic CrIII follow those of CoII ions in the shell and those of NiII ions in the core, and this leads to nonuniform magnetization in the whole nanoobject, mainly due to the large difference in local anisotropy between the CoII ions belonging to the surface and the NiII ions in the core.  相似文献   

14.
Atomically precise polyoxometalate–Ag2S core–shell nanoparticles were generated in a top‐down approach under solvothermal conditions and structurally confirmed by X‐ray single‐crystal diffraction as an interesting core–shell structure comprising an in situ generated Mo6O228? polyoxometalate core and a mango‐like Ag58S38 shell. This result demonstrates the possibility to integrate polyoxometalate and Ag2S nanoparticles into a core–shell heteronanostructure with precisely controlled atomical compositions of both core and shell.  相似文献   

15.
Multifunctional nanoprobes with distinctive magnetic and fluorescent properties are highly useful in accurate and early cancer diagnosis. In this study, nanoparticles of Fe3O4 core with fluorescent SiO2 shell (MFS) are synthesized by a facile improved Stöber method. These nanoparticles owning a significant core-shell structure exhibit good dispersion, stable fluorescence, low cytotoxicity and excellent biocompatibility. TLS11a aptamer (Apt1), a specific membrane protein for human liver cancer cells which could be internalized into cells, is conjugated to the MFS nanoparticles through the formation of amide bond working as a target-specific moiety. The attached TLS11a aptamers on nanoparticles are very stable and can't be hydrolyzed by DNA hydrolytic enzyme in vivo. Both fluorescence and magnetic resonance imaging show significant uptake of aptamer conjugated nanoprobe by HepG2 cells compared to 4T1, SGC-7901 and MCF-7 cells. In addition, with the increasing concentration of the nanoprobe, T2-weighted MRI images of the as-treated HepG2 cells are significantly negatively enhanced, indicating that a high magnetic field gradient is generated by MFS-Apt1 which has been specifically captured by HepG2 cells. The relaxivity of nanoprobe is calculated to be 11.5 mg−1s−1. The MR imaging of tumor-bearing nude mouse is also confirmed. The proposed multifunctional nanoprobe with the size of sub-100 nm has the potential to provide real-time imaging in early liver cancer cell diagnosis.  相似文献   

16.
《中国化学会会志》2017,64(4):440-448
Praseodymium (Pr3+)‐doped YF3 (core) and LaF3 ‐covered YF3 :Pr (core–shell) nanocrystals (NCs ) were prepared successfully by an ecofriendly, polyol‐based, co‐precipitation process, which were then coated with a silica shell by using a sol–gel‐based Stober method. X‐ray diffraction (XRD), transmission electron microscopy (TEM ), thermal analysis, Fourier transform infrared (FTIR) , UV /vis, energy bandgap, and photoluminescence studies were used to analyze the crystal structure, morphology, and optical properties of the nanomaterial. XRD and TEM results show that the grain size increases after sequential growth of crystalline LaF3 and the silica shell. The silica surface modification enhances the solubility and colloidal stability of the core–shell‐SiO2 NCs . The results indicate that the surface coating affects the optical properties because of the alteration in crystalline size of the materials. The emission intensity of silica‐modified NCs was significantly enhanced compared to that of core and core–shell NCs . These results are attributed to the formation of chemical bonds between core–shell and noncrystalline SiO2 shell via La–O–Si bridges, which activate the “dormant” Pr3+ ions on the surfaces of the nanoparticles. The luminescence efficiency of the as‐prepared core, core–shell, and core–shell‐SiO2 NCs are comparatively analyzed, and the observed differences are justified on the basis of the surface modification surrounding the luminescent seed core NCs .  相似文献   

17.
Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core–shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X‐ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe2+ to Fe3+ near the interface between the Au and the Fe. The charge‐transfer‐induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.  相似文献   

18.
Unpredictable in vivo therapeutic feedback of hydroxyl radical (.OH) efficiency is the major bottleneck of chemodynamic therapy. Herein, we describe novel Fenton-based nanotheranostics NQ-Cy@Fe&GOD for spatio-temporally reporting intratumor .OH-mediated treatment, which innovatively unites dual-channel near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) signals. Specifically, MRI signal traces the dose distribution of Fenton-based iron oxide nanoparticles (IONPs) with high-spatial resolution, meanwhile timely fluorescence signal quantifies .OH-mediated therapeutic response with high spatio-temporal resolution. NQ-Cy@Fe&GOD can successfully monitor the intracellular release of IONPs and .OH-induced NQO1 enzyme in living cells and tumor-bearing mice, which makes a breakthrough in conquering the inherent unpredictable obstacles on spatio-temporally reporting chemodynamic therapy, so as to manipulate dose-dependent therapeutic process.  相似文献   

19.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   

20.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号