首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanistic study of the trans?cis isomerization of the azobenzene moiety in a side‐chain liquid‐crystal polymer system was carried out with six liquid‐crystalline polymethacrylates in which different electron‐withdrawing substituents were attached to the para‐positions of the azobenzene chromophores. Compared to the non‐nitro‐substituted azo polymers, the nitro‐substituted azo polymers exhibited two quite different behaviors: an extraordinarily high reaction rate of the thermal cis–trans isomerization and an unexpected composition of cis–trans isomers obtained from the photochemical trans–cis isomerization process. A potential energy profile for the isomerization process was established on basis of the structures of the proposed transition states and was employed to elucidate the reaction mechanism. The results confirmed that the nitro‐substituted azo polymer system proceeded via a rotation mechanism in either direction of the trans?cis isomerization reaction, whereas the non‐nitro‐substituted species were more likely to follow an inversion mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2296–2307, 2001  相似文献   

2.
In the present work, chromophoric system (E)‐4‐(naphthalen‐1‐yl diazenyl)benzoic acid was synthesized and incorporated into lignin core. The end hydroxyl group of lignin was modified with the free carboxyl group of the chromophoric systems by dicyclohexylcarbodiimide coupling. The products were characterized by means of UV–visible, fluorescence, FT‐IR, and NMR spectroscopic methods and subjected to photoresponsive studies. The results show that modification enhances the light absorption and light fastening properties of the chromophoric system. The photoinduced trans–cis isomerization on the newly developed photosensitive biopolymeric system and the chromophoric system were investigated. Results also show that the trans–cis photoisomerization and the reverse cis–trans thermal conversions of the photoactive groups were also assisted by the incorporation onto biopolymeric core. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The thermal cis–trans isomerization of cis‐transoidal polyphenylacetylene (PPA) synthesized with Noyori's catalyst [Rh(C?CPh)(norbornadiene)(PPh3)2] has been investigated under both ambient and inert atmospheres in solution and in bulk. In all cases, an intramolecular cyclization results in cis–trans isomerization, and subsequent chain cleavage produces 1,3,5‐triphenylbenzene. This reaction is accelerated by the presence of air, particularly when the reaction takes place in solution. Decreases in the cis content and molecular weight show that the intramolecular cyclization process takes place at 23 °C in solution. The mechanism of this reaction is identical to that reported previously for cis‐cisoidal and cis‐transoidal PPA synthesized with Ziegler–Natta catalysts. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3212–3220, 2002  相似文献   

4.
Copolymers of phenylacetylene (PA) and para‐nitrophenylacetylene (pNPA), named poly(PA‐copNPA), were obtained in different PA/pNPA ratios and different reaction conditions with Rh(I) catalysts. The structure of the copolymers was investigated with IR, laser Raman, 1H NMR, electron spin resonance (ESR), and diffuse reflective ultraviolet–visible (DRUV) light spectroscopies. The pristine polymers had a cis–transoidal structure as the predominant conformation with some trans sequences. Detailed ESR studies supported by computer simulation and conformation analysis have suggested that the trans sequences were due to pNPA sequences and that the cis‐C?C bond sequences of pNPA were associated with a stabilized cis radical formed by four to five of pNPA monomers. This particular stabilization was probably the reason for the higher reactivity of pNPA as compared with PA. These cis sequences were preferentially cleaved to generate π radicals. The compression and, to a minor extent, thermal treatment of poly(PA‐copNPA) samples induced a cis‐to‐trans isomerization, leading to a trans–transoidal form with a planar zigzag structure and with a conjugation length up to n = 24 repeat units, determined by DRUV and Raman experiments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2365–2376, 2004  相似文献   

5.
A series of copolyamides 12.y was synthesized either with y = 6, or 1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA) residue, or a mixture of both. The influence of the synthetic route of 1,4‐CHDA containing polyamides on the obtained cis–trans ratio of the incorporated 1,4‐CHDA was investigated. The use of acid chlorides provided a synthetic route with full control of the cis–trans ratio of the 1,4‐CHDA residue during synthesis, whereas synthesis at elevated pressure and temperature caused isomerization. The content and cis–trans ratio of 1,4‐CHDA in the copolyamides were determined by solution 13C NMR spectroscopy. Increasing the degree of partial substitution of the adipic acid by 1,4‐CHDA resulted in an increase in Tm, even for low molar precentages of 1,4‐CHDA. This phenomenon points to isomorphous crystallization of both the 12.6 and 12.CHDA repeating units. The mps of the synthesized polyamides were independent of the initial cis–trans ratio of 1,4‐CHDA, provided that the samples were annealed at 300 °C before DSC analysis. The polyamides exhibited a different melting pattern depending on the 1,4‐CHDA content. At a low a 1,4‐CHDA content a net exothermic recrystallization occurred during melting, whereas at higher contents of 1,4‐CHDA this recrystallization occurs to a lesser extent, and two separate melting areas are observed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 833–840, 2001  相似文献   

6.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

7.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

8.
Copolymer containing new thermally reversible click chemistry‐assisted triazole‐substituted azobenzene and fulgimide units in the pendant F‐co‐A was prepared by free‐radical solution addition polymerization technique. The F and A were also prepared for comparison. The DSC analysis of F indicates that the polymer possessing the C‐form of fulgimide unit exhibited higher Tm than that of E‐form of the same polymer and revealed that the C‐form of fulgimide unit in F is highly ordered. The cis‐trans back isomerization behavior of the click chemistry‐assisted triazole‐substituted azobenzene unit in film A has thermal irreversibility, while in F‐co‐A it exhibited thermal reversibility. The UV‐exposed film of F‐co‐A heated around Tg leads to cis‐trans back isomerization of azobenzene unit and thermally stable C‐form of fulgimide which retains its conjugated structure where both the photochromic units are converted into planar conformations and exhibit high fluorescence properties. The fluorescence maxima of C‐form in F‐co‐A red shifted compared with F , because the substituted triazole ring in the azobenzene unit stabilized the C‐form of fulgimide unit. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7843–7860, 2008  相似文献   

9.
The living cationic polymerization of 4‐[2‐(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4‐[2‐(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase‐transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138–5146, 2005  相似文献   

10.
Conductive metal–organic frameworks (MOFs) as well as smart, stimuli‐responsive MOF materials have attracted considerable attention with respect to advanced applications in energy harvesting and storage as well as in signal processing. Here, the conductance of MOF films of type UiO‐67 with embedded photoswitchable nitro‐substituted spiropyrans was investigated. Under UV irradiation, the spiropyran (SP) reversibly isomerizes to the open merocyanine (MC) form, a zwitterionic molecule with an extended conjugated π‐system. The light‐induced SP–MC isomerization allows for remote control over the conductance of the SP@UiO‐67 MOF film, and the conductance can be increased by one order of magnitude. This research has the potential to contribute to the development of a new generation of photoelectronic devices based on smart hybrid materials.  相似文献   

11.
On the basis of the change in electronic and induced circular dichroism spectra for complex formation, the complexation of 4‐dimethylaminoazobenzene (DAAB) with four kinds of cyclodextrins (α‐ and β‐cyclodextrin (CD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin, and heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin) was studied in methanol–water and dimethyl sulfoxide–water mixtures. It was found that the trans and cis isomers of DAAB form two different types of complex (inclusion and lid type) with CDs, depending on the kinds of CDs and solvents. Further, we have examined the effect of CDs on the thermal cis‐to‐trans isomerization of DAAB. The accelerated or decelerated effect on the thermal isomerization was observed upon adding CDs. The effects of CDs on the thermal isomerization are discussed in connection with the complexation of the cis‐isomer of DAAB with CDs. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 481–487, 2002  相似文献   

12.
A chromophoric system (E)‐2‐(4‐(naphthalen‐1‐yldiazenyl)phenyl)acetic acid incorporated onto a nature friendly biopolymeric core material, lignin (technical lignin, lignin sulphonic acid M.W. 52,400), and the photo responsive behavior of the product was investigated. The product was characterized by UV–visible, fluorescence, Fourier transform infrared, and nuclear magnetic resonance spectroscopic methods. The results of the studies show that the incorporation of the chromophoric system on to the lignin core enhanced the light absorption and light stabilization properties of the chromophoric system. The trans‐cis photoisomerization and the reverse cis‐trans thermal conversions were also assisted by the lignin core. The remarkable stability on irradiation shows that this is a novel photoresponsive system with excellent light fastening properties which would find application in coating materials, dyes, paints, inks, and many more. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
2‐Formylthiophene‐N‐acetylhydrazone (Hait) and 2‐thiophenecarboxaldehyde‐2‐thienylhydrazone (Htit) in the cis and trans conformations were investigated in the gas‐phase by density functional method using B3LYP as the functional set and 6‐311++G(d,p) as the basis set. The cis and trans structures were fully optimized in the C1 and Cs symmetries. Transition states were also modeled for the cis–trans isomerization of the title compounds and the barriers to internal rotation were calculated. This work reports the structural, energetics, and spectroscopic parameters of all the optimized geometries. Some of the structural parameters are in good agreement with experimental literature data. The computed parameters for these compounds are also in good agreement with a related molecule, namely, acetohydrazide. For both Hait and Htit, the trans conformers are more stable than the cis conformers and the energy barriers are larger compared with the energy differences between the cis and trans conformers. This accounts for Hait and Htit existing mostly in the trans conformation. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:144–150, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20526  相似文献   

14.
Two new cyclic ligands were synthesized: a ligand with two trans-azobenzene moieties and one bipyridine moiety, trans(2)-oAB-O13, and a ligand with two trans-azobenzene moieties and two bipyridine moieties, trans(2)-oAB-bpy. Both ligands underwent reversible trans-cis isomerization at the azobenzene moieties. The mole ratios of the trans(2) form:trans-cis form:cis(2) form, evaluated by (1)H NMR spectroscopy of the photostationary states prepared by 1 h illumination, were 0.13:0.27:0.60 (365 nm irradiation) and 0.41:0.47:0.12 (436 nm irradiation) for oAB-O13, and 0.18:0.12:0.70 (365 nm irradiation) and 0.36:0.43:0.21 (436 nm irradiation) for oAB-bpy. When trans(2)-oAB-O13 was mixed with Cu(I), both the bipyridine units and the polyether chains coordinated to the copper center. Addition of a noncyclic bipyridine ligand, trans(2)-oAB-2OH, afforded a bis(bipyridine)copper(I) complex, [Cu(trans(2)-oAB-O13)(trans(2)-oAB-2OH)]BF(4). The bis(bipyridine) ligand, trans(2)-oAB-bpy, formed a 1:1 complex with Cu(I), [Cu(trans(2)-oAB-bpy)]BF(4). [Cu(cis(2)-oAB-bpy)]BF(4) did not undergo the ligand substitution reaction with a noncyclic ligand with two azobenzene moieties and one bipyridine moiety, oAB, whereas its thermal isomerization in the presence of oAB caused the formation of [Cu(trans(2)-oAB-bpy)(trans(2)-oAB)]BF(4), indicating that the isomerization and ligand exchange reactions synchronized via a conformational change of the cyclic ligand.  相似文献   

15.
Three kinds of photoresponsive polymethacrylates containing different bisazo chromophores were prepared with atom transfer radical polymerization and characterized with proton nuclear magnetic resonance, gel permeation chromatography, and ultraviolet–visible spectra. These polymers had similar molecular weights, molecular weight distributions, glass‐transition temperatures, and absorption coefficients. The irradiation of these polymer films with a linearly polarized laser could induce birefringence because of the reorientation of the bisazo chromophores through trans–cis–trans isomerization cycles of double azo bonds, and the corresponding mechanism was also examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4237–4247, 2004  相似文献   

16.
The UV- and thermal-induced cis→trans isomerization of undoped polyacetylene (PA) films has been investigated. The results have shown that temperature and UV light promote the isomerization of PA with a similar mechanism. We suggest that the formation of paramagnetic defects in trans PA takes place by bond rehybridization, in agreement with previous hypotheses, and that both spin concentration and spin delocalization depend on the temperature of isomerization. It was found that under UV irradiation thermal cis→trans isomerization of polyacetylene also takes place at temperatures at which the sole thermal treatment isomerization is much lower or nil, and we suggest that the possibility of preparing trans PA under relatively mild conditions may lead to a better material.  相似文献   

17.
The reactivities and reaction rates of the thiol–ene coupling reaction of 2‐ethyl‐(hydroxymethyl)‐1,3‐propanediol trimercapto acetate and 2‐ethyl‐(hydroxymethyl)‐1,3‐propanediol trimercapto propionate with two common unsaturated fatty acid methyl esters (methyl oleate and methyl linoleate) were evaluated. The reactions were monitored with real‐time IR and 1H NMR, which both showed that the mercapto acetate was more reactive than the mercapto propionate. Both thiols were more prone to add to the monounsaturated methyl oleate than to methyl linoleate, which contained two unconjugated double bonds. According to bond energy calculations, the thiol hydrogen of mercapto acetate was somewhat more difficult to abstract than the hydrogen of mercapto propionate. Consequently, the formed S? C bond in the acetate case was stronger than in the propionate case, and so the equilibrium was more shifted toward the addition products. The real‐time IR measurements also showed that the cis unsaturation in methyl oleate isomerized much more quickly than that in methyl linoleate, and this also had an impact on the overall addition rate of the thiols because a trans unsaturation was more reactive than a cis unsaturation. The higher isomerization rates in the oleate systems, compared with those of the linoleate systems, was suggested to be due to a more restricted rotation along the C? C bond of the reacted unsaturation in linoleate. This study showed the importance of trans unsaturations in obtaining reasonable reaction rates in thiol–ene reactions with fatty acid derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6346–6352, 2004  相似文献   

18.
The effect of the chemical structure on the reactivity of alkenes used in thiol–ene photopolymerizations has been investigated with real‐time infrared spectroscopy. Model studies of thiol–ene photoreactions with various monofunctional hydrocarbon alkenes and the monofunctional thiol ethyl‐3‐mercaptopropionate have been performed to identify and understand structure–reactivity relationships. The results demonstrate that terminal enes react very rapidly with thiol, achieve complete conversion, and are independent of the aliphatic hydrocarbon substituent length. Disubstitution on a single carbon of a terminal ene significantly reduces the reactivity, whereas substitution on the carbon α to the terminal ene has a minimal influence on the reactivity. Internal trans enes display reduced reactivity and a lower overall conversion and deviate from the standard thiol–ene reaction mechanism because of steric strain induced by 1,3‐interactions. The reactivity and conversion of internal trans enes decrease as the substituents on the ene become larger, reaching a minimum when the substituent size is greater than or equal to that of propyl groups. Internal cis enes react rapidly with thiol; however, they undergo a fast isomerization–elimination reaction sequence generating the trans ene, which proceeds to react at a reduced rate with thiol. The reactivity of cyclic enes is dictated by ring strain, stereoelectronic effects, and hydrogen abstractability. The reactivity trends in the model studies have been used to explain the photopolymerization mechanism and kinetics of a series of multifunctional thiol–ene systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6283–6298, 2004  相似文献   

19.
The Suzuki (for O1 – O3 ) and Stille (for O4 ) coupling polymerization of 2‐(phenylazo)imidazole bearing the benzyl protecting group at the 1‐position gave conjugated oligomers. The transformation from the neutral imidazole in the conjugated oligomer O2 , consisted of the alternating 2,5‐didecyl‐1,4‐phenylene unit, to the cationic imidazolium salt O2S was performed. Depending on the chemical structure of coupling partners, the absorption maximum of conjugated oligomers showed red shift or blue shift from that of the model compound M with the benzene ring at the 4,5‐positions. The absorption maximum wavelength of the cationic conjugated oligomer O2S showed a blue shift from that of the neutral conjugated oligomer O2 . The trans‐to‐cis photoisomerization of the azoimidazole unit in conjugated oligomers was observed by irradiating the light at 436 nm, and the conversion degree to the cis structure had a rough correlation with the maximum absorption wavelength of materials. The trans‐to‐cis photoisomerization in the film state was sluggish. On the other hand, the cis‐to‐trans thermal isomerization of the azoimidazole unit was confirmed and the absorbance returned to the initial state before the photoisomerization. The trans‐to‐cis photoisomerization of the cationic conjugated oligomer O2S required large energy, and the prolonged light irradiation might decompose the azoimidazole unit. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

20.
The synthesis and characterization of a copolymer based on 4′‐(6‐acryloxy)hexyloxy‐4‐methoxyazobenzene (MAB6) and acrylic acid (AA) are reported. A reaction was carried out by free‐radical polymerization, yielding an MAB6 homopolymer and an AA–MAB6 copolymer with an MAB6 concentration of 16–80%. A nematic phase was observed in the copolymer when the MAB6 content was 44% or higher. Both nematic and smectic phases were observed in the MAB6 homopolymer. All of the polymers were investigated for trans–cis–trans isomerization in a solid film. The samples were irradiated with nonpolarized ultraviolet light (385 nm) before absorption measurements were taken with an ultraviolet–visible spectrometer. The copolymer and homopolymer exhibited a thermal cis–trans isomerization, which could be described by a double‐exponential relaxation process (fast and slow). The relaxation experiment suggested that the hydrogen bonding may have hindered the slow process but had no effect on the fast process. A film of a copolymer sample with a high MAB6 content could be optically aligned by the exposure of the sample to polarized light (385 nm). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4017–4024, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号