首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mechanochemical version of the Strecker reaction for the synthesis of α‐aminonitriles was developed. The milling of aldehydes, amines, and potassium cyanide in the presence of SiO2 gave the corresponding α‐aminonitriles in good to high yields. The high efficiency of the mechanochemical Strecker‐type multicomponent reaction allowed the one‐pot synthesis of tetrahydroisoquinolines after a subsequent internal N‐alkylation reaction.  相似文献   

2.
A chiral oxazoline‐based organocatalyst has been found to efficiently catalyze asymmetric Strecker reactions of various aromatic and aliphatic N‐benzhydrylimines with trimethylsilyl cyanide (TMSCN) as a cyanide source at ?20 °C to give α‐aminonitriles in high yield (96 %) with excellent chiral induction (up to 98 % ee). DFT calculations have been performed to rationalize the enantioselective formation of the product with the organocatalyst in these reactions. The organocatalyst has been characterized by single‐crystal X‐ray diffraction analysis, as well as by other analytical methods. This protocol has been extended to the synthesis of the pharmaceutically important drug molecule levamisole in high yield and with high enantioselectivity.  相似文献   

3.
Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet‐oxygen‐mediated oxidation of 1° and 2° amines is sensitive to the strength of the α‐C?H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one‐bond C?H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross‐couplings to produce imines.  相似文献   

4.
Fe3O4@SiO2–APTES‐supported trifluoroacetic acid nanocatalyst was used for the one‐pot synthesis of α‐aminonitriles via a three‐component reaction of aldehydes (or ketones), amines, and sodium cyanide. This method produced a high yield of 75–96% using only a small amount of the catalyst (0.05 g) in EtOH at room temperature. The catalyst was also employed for the synthesis of 5‐substituted 1H‐tetrazoles from nitriles and sodium azide in EtOH at 80°C. The tetrazoles were produced with good‐to‐excellent yields in a short reaction time of 4 h. Both synthetic methods were carried out in the absence of an organic volatile solvent. Because the supported trifluoroacetic acid generated a solid acid on the surface, thus the acid corrosiveness was not a serious challenge. This heterogeneous nanocatalyst was magnetically recovered and reused several times without significant loss of catalytic activity.  相似文献   

5.
《合成通讯》2013,43(12):1577-1582
Abstract

Vanadyl triflate to catalyzed Strecker‐type reactions were successfully carried out by simply mixing aldehydes, amines, and trimethylsilyl cyanide at room temperature to afford α‐aminonitriles in good yields.  相似文献   

6.
One‐step synthesis of α‐aminonitriles was successfully carried out by a three‐component condensation of aldehydes or ketones, amines, and potassium cyanide in the presence of a catalytic amount of K5CoW12O40·3H2O as an efficient, reusable, and nontoxic catalyst.  相似文献   

7.
A straightforward and efficient method has been developed for the synthesis of α‐aminonitriles by combining aldehydes, amines and trimethylsilyl cyanide in the presence of a catalytic amount of thallium(III) chloride tetrahydrate (1 mol%) under solvent‐free conditions at room temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《合成通讯》2013,43(17):3147-3160
Abstract

Synthesis of N‐Boc‐protected α‐aminonitriles starting from N‐Boc‐protected α‐aminosulfones is described. Treatment of the sulfone with two equivalents of potassium cyanide in 2‐propanol or dichloromethane‐H2O under phase transfer condition affords crystalline N‐Boc‐protected α‐aminonitriles in good yield. Hydrolysis of the aminonitriles provides a convenient access to racemic α‐amino acids.  相似文献   

9.
A simple and efficient one‐pot method has been developed for the synthesis of α‐aminonitriles by concurrent reaction of aldehydes, amines and trimethylsilyl cyanide with a catalytic amount of NbCl5 (10 mol%) in CH3CN at room temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and efficient one‐pot method has been developed for the synthesis of α‐aminonitriles from aldehydes, amines, and trimethylsilyl cyanide in the presence of a catalytic amount of ferric perchlorate.  相似文献   

11.
Strecker synthesis has long been considered one of the prebiotic reactions for the synthesis of α‐amino acids. However, the correlation between the origin of chirality and highly enantioenriched α‐amino acids through this method remains a puzzle. In the reaction, it may be conceivable that the handedness of amino acids has been determined at the formation stage of the chiral intermediate α‐aminonitrile, that is, the enantioselective addition of hydrogen cyanide to an imine. Herein, an enantiotopic crystal surface of an achiral imine acted as an origin of chirality for the enantioselective formation of α‐aminonitriles by the addition of HCN. In conjunction with the amplification of the enantiomeric excess and multiplication of enantioenriched aminonitrile, a large amount of near enantiopure α‐amino acids, with the l ‐ and d ‐handedness corresponding to the molecular orientation of the imine, is reported.  相似文献   

12.
A highly efficient metal‐free catalytic system for the aerobic photocyanation of tertiary amines with visible light is reported. The use of air as terminal oxidant offers an improved safety profile compared with pure oxygen, the used compact fluorescent lamp (CFL) light sources are highly economical, and no halogenated solvents are required. This system not only proves to be effective for a wide variety of trialkylamines, pharmaceuticals, and alkaloids but remarkably also allows the lowest catalyst loading (0.00001 mol % or 0.1 ppm) ever reported for an organic dye. Bruylants reactions and C‐alkylation/decyanations were performed on the obtained α‐aminonitriles to demonstrate the postfunctionalization of complex molecules. The catalytic system is furthermore applied in the short and effective syntheses of the alkaloids (±)‐crispine A and the tetraponerines T7 and T8.  相似文献   

13.
The asymmetric Favorskii rearrangement of optically active α‐haloketones, which are easily prepared from chiral menthyl‐4‐toluenesulfoxide in several steps using primary or secondary amines, yields their corresponding secondary or tertiary chiral amides. The secondary chiral amides were converted to acids or amines using acylation followed by hydrolysis or reduction. In addition, the tertiary amides were directly reduced to alcohol with Super‐Hydride®.  相似文献   

14.
Microwave‐assisted treatment of ethyl 5‐hydroxy‐1‐phenyl‐1H‐pyrazole‐4‐carboxylate with excess primary aliphatic amines in 1‐propanol at 140°C and with excess pyrrolidine or piperidine in 2‐methoxyethanol at 180°C produced the corresponding carboxamides in good yields.  相似文献   

15.
The thermal decomposition behavior of six derivatives of maleated polyethylene was investigated by high‐resolution pyrolysis gas chromatography–mass spectrometry. The results revealed that substituents attached to maleated polyethylene as amides formed from secondary amines were significantly less stable than imides formed from primary amines. Morpholine amide and N‐methylaniline amide derivatives of maleated polyethylene underwent significant decomposition at 160 °C and substantial decomposition at 200 °C. In contrast, the imide derivatives of maleated polyethylene were stable for long periods of time at elevated temperatures. Following 2 min of heating, the first traces of decomposition were detected at 200 °C for the 2‐aminoanthrancene imide derivative, at 255 °C for the 2‐phenethylamine imide, and at 280 °C for the 9‐aminomethylphenanthrene imide. With the exception of the 9‐aminomethylphenanthrene imide, all other derivatives decomposed to form the corresponding amine as the single most significant volatile product. The most likely explanation for this result is that the polymer contained small amounts of succinamic acid that did not close to form the imide. We concluded that the imide was stable even to 315 °C and that the amine was lost from β‐carboxyamide groups present in the sample. In the 9‐aminomethylphenanthrene imide derivative, we observed no loss of amine. Instead, we observed an alternative fragmentation process yielding 9‐methyl phenanthrene. The dependence of the thermal stability of these various derivatives of maleated polyethylene has important implications for the design of reactive‐blending strategies for polyolefins with other functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 730–740, 2000  相似文献   

16.
An efficient, general procedure for reductive methylation of primary and secondary amines with 37% formaldehyde using N-methylpyrrolidine zinc borohydride (ZBHNMP) as a reducing agent gave the corresponding tertiary amines in excellent yields. The reaction was carried out in tetrahydrofuran under neutral conditions at 0–10 °C.  相似文献   

17.
A decarboxylative silylation of aliphatic N ‐hydroxyphthalimide (NHPI) esters using Si−B reagents as silicon pronucleophiles is reported. This C(sp3)−Si cross‐coupling is catalyzed by copper(I) and follows a radical mechanism, even with exclusion of light. Both primary and secondary alkyl groups couple effectively, whereas tertiary alkyl groups are probably too sterically hindered. The functional‐group tolerance is generally excellent, and α‐heteroatom‐substituted substrates also participate well. This enables, for example, the synthesis of α‐silylated amines starting from NHPI esters derived from α‐amino acids. The new method extends the still limited number of C(sp3)−Si cross‐couplings of unactivated alkyl electrophiles.  相似文献   

18.
o‐Carboryne can undergo α‐C? H bond insertion with tertiary amines, thus affording α‐carboranylated amines in very good regioselectivity and isolated yields. In this process, the nucleophilic addition of tertiary amines to the multiple bond of o‐carboryne generates a zwitterionic intermediate. An intramolecular proton transfer, followed by a nucleophilic attack leads to the formation of the final product. Thus, regioselectivity is highly dependent upon the acidity of α‐C? H proton of tertiary amines. This approach serves as an efficient methodology for the preparation of a series of 1‐aminoalkyl‐o‐carboranes.  相似文献   

19.
o‐Carboryne can undergo α‐C H bond insertion with tertiary amines, thus affording α‐carboranylated amines in very good regioselectivity and isolated yields. In this process, the nucleophilic addition of tertiary amines to the multiple bond of o‐carboryne generates a zwitterionic intermediate. An intramolecular proton transfer, followed by a nucleophilic attack leads to the formation of the final product. Thus, regioselectivity is highly dependent upon the acidity of α‐C H proton of tertiary amines. This approach serves as an efficient methodology for the preparation of a series of 1‐aminoalkyl‐o‐carboranes.  相似文献   

20.
Compared to the α‐functionalization of aldehydes, ketones, even esters, the direct α‐modification of amides is still a challenge because of the low acidity of α‐CH groups. The α‐functionalization of N−H (primary and secondary) amides, containing both an unactived α‐C−H bond and a competitively active N−H bond, remains elusive. Shown herein is the general and efficient oxidative α‐oxyamination and hydroxylation of aliphatic amides including secondary N−H amides. This transition‐metal‐free chemistry with high chemoselectivity provides an efficient approach to α‐hydroxy amides. This oxidative protocol significantly enables the selective functionalization of inert α‐C−H bonds with the complete preservation of active N−H bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号