首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a multi‐objective de novo design study driven by synthetic tractability and aimed at the prioritization of computer‐generated 5‐HT2B receptor ligands with accurately predicted target‐binding affinities. Relying on quantitative bioactivity models we designed and synthesized structurally novel, selective, nanomolar, and ligand‐efficient 5‐HT2B modulators with sustained cell‐based effects. Our results suggest that seamless amalgamation of computational activity prediction and molecular design with microfluidics‐assisted synthesis enables the swift generation of small molecules with the desired polypharmacology.  相似文献   

2.
A new compound with the formula L‐B2‐L wherein the stabilizing ligand (L) is 1,3‐bis[diisopropylphenyl]‐4,5‐dihydroimidazol‐2‐ylidene (SIDip) has been synthesized, isolated, and characterized. The π‐acidity of the SIDip ligand, intermediate between the relatively non‐acidic IDip (1,3‐bis[diisopropylphenyl]imidazol‐2‐ylidene) ligand and the much more highly acidic CAAC (1‐[2,6‐diisopropylphenyl]‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) ligand, gives rise to a compound with spectroscopic, electrochemical, and structural properties between those of L‐B2‐L compounds stabilized by CAAC and IDip. Reactions of all three L‐B2‐L compounds with CO demonstrate the differences caused by their respective ligands, as the π‐acidities of the CAAC and SIDip carbenes enabled the isolation of bis(boraketene) compounds (L(OC)B‐B(CO)L), which could not be isolated from reactions with B2(IDip)2. However, only B2(IDip)2 and B2(SIDip)2 could be converted into bicyclic bis(boralactone) compounds.  相似文献   

3.
We present the development and application of a computational molecular de novo design method for obtaining bioactive compounds with desired on‐ and off‐target binding. The approach translates the nature‐inspired concept of ant colony optimization to combinatorial building block selection. By relying on publicly available structure–activity data, we developed a predictive quantitative polypharmacology model for 640 human drug targets. By taking reductive amination as an example of a privileged reaction, we obtained novel subtype‐selective and multitarget‐modulating dopamine D4 antagonists, as well as ligands selective for the sigma‐1 receptor with accurately predicted affinities. The nanomolar potencies of the hits obtained, their high ligand efficiencies, and an overall success rate of 90 % demonstrate that this ligand‐based computer‐aided molecular design method may guide target‐focused combinatorial chemistry.  相似文献   

4.
Coordination of a redox‐active pyridine aminophenol ligand to RuII followed by aerobic oxidation generates two diamagnetic RuIII species [ 1 a (cis) and 1 b (trans)] with ligand‐centered radicals. The reaction of 1 a / 1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)‐bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru‐N‐Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a / 1 b supports the oxidation of a nitride (N3?) to half an equivalent of N2. The trinuclear omplex is reactive toward TEMPO‐H, tin hydrides, thiols, and dihydrogen.  相似文献   

5.
Inverse carbon‐free sandwich structures with formula E2P4 (E=Al, Ga, In, Tl) have been proposed as a promising new target in main‐group chemistry. Our computational exploration of their corresponding potential‐energy surfaces at the S12h/TZ2P level shows that indeed stable carbon‐free inverse‐sandwiches can be obtained if one chooses an appropriate Group 13 element for E. The boron analogue B2P4 does not form the D4h‐symmetric inverse‐sandwich structure, but instead prefers a D2d structure of two perpendicular BP2 units with the formation of a double B?B bond. For the other elements of Group 13, Al–Tl, the most favorable isomer is the D4h inverse‐sandwich structure. The preference for the D2d isomer for B2P4 and D4h for their heavier analogues has been rationalized in terms of an isomerization‐energy decomposition analysis, and further corroborated by determination of aromaticity of these species.  相似文献   

6.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

7.
A total of 35 [Au(NHC)2][MX2] (NHC=N‐heterocyclic carbene; M=Au or Cu; X=halide, cyanide or arylacetylide) complex salts were synthesized by co‐precipitation of [Au(NHC)2]+ cations and [MX2]? anions. These salts contain crystallographically determined polymeric Au???Au or Au???Cu interactions and are highly phosphorescent with quantum yields up to unity and emission color tunable in the entire visible regions. The nature of the emissive excited states is generally assigned to ligand (anion)‐to‐ligand (cation) charge‐transfer transitions assisted by d10???d10 metallophilicity. The emission properties can be further tuned by controlled triple‐component co‐crystallization or by epitaxial growth. Correct recipes for white light‐emitting phosphors with quantum yields higher than 70 % have been achieved by screening the combinatorial pool.  相似文献   

8.
Aflatoxin contamination in agricultural products poses a great threat to humans and livestock. The aim of this study was to establish a simple, rapid, highly sensitive, and inexpensive method for the simultaneous detection of aflatoxin B1, B2, G1, and G2 in agricultural products. We used a vortex assisted low density solvent–microextraction (VALDS‐ME) technique for sample preconcentration and sample detection was achieved with a CE‐LIF method. Aflatoxins were separated in an uncoated fused‐silica capillary with the MEKC mode and were excited by a 355 nm UV laser to produce native fluorescence for detection. The obtained LOD and LOQ for the four aflatoxins were in the range of 0.002–0.075 and 0.007–0.300 μg/L, respectively, and the analysis time was within 6.5 min. Using the established method, aflatoxins were screened in naturally contaminated dairy cattle feed samples including alfalfa, bran, and corn kernel. The result shows that the alfalfa and bran samples were contaminated with aflatoxins to varying degrees. Compared with other analytical techniques for aflatoxin screening in agricultural products, this CE‐LIF method combined with VALDS‐ME preconcentration technique is simple, rapid, highly efficient, and inexpensive.  相似文献   

9.
Reactions between BIII species and the novel nucleophilic cyclopentadienyl‐stabilized AlI reagent ( 1 ) result in a diversity of complexes bearing different Al/B oxidation states and coordination geometries. With the triarylborane B(C6F5)3, a simple AlI→BIII adduct is formed. In contrast, a bulky aryldihaloborane undergoes oxidative addition with the formation of a covalent bora‐alane species. With an N‐heterocyclic carbene‐stabilized amino(bromo)borenium ion, a redox reaction was observed, where the product is a borylene‐alane BI→AlIII complex. Additionally, reaction of 1 with BI3 results in complete scrambling of all of the Al/B‐bound substituents, and the formation of a cyclopentadienylboron(I)→AlI3 complex. These latter reactions are the first examples of the reduction of a boron(III) compound to a borylene by a p‐block reagent, and illustrate how subtle changes in the nature of the borane can result in highly divergent reaction outcomes.  相似文献   

10.
Summary: The coordinative polymerization/cyclization of a flexible monodisperse di‐terpyridine ligand with iron(II ) chloride is reported. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) investigations showed the preferred formation of a [2 + 2] macrocycle, but also larger aggregates (cycles or linear oligomers) with up to 10 monomer units were found. Because of its C16‐spacer, the solubility is sufficient for performing viscosity experiments in CHCl3/MeOH solution. A viscosity titration revealed a maximum in viscosity at the 1‐to‐1 ratio of iron(II ) ions to di‐terpyridine‐ligands, which indicates the formation of extended oligomers, polymers, catenanes and/or cycles at that ratio.

Schematic representation of intra‐ and intermolecular metallo‐macrocycles.  相似文献   


11.
Dynamic combinatorial chemistry (DCC) has emerged as an efficient approach to receptor/ligand identification based on the generation of combinatorial libraries by reversible interconversion of the library constituents. In this study, the implementation of such libraries on carbohydrate-lectin interactions was examined with the plant lectin Concanavalin A as a target species. Dynamic carbohydrate libraries were generated from a pool of carbohydrate aldehydes and hydrazide linker/scaffold components through reversible acylhydrazone exchange, resulting in libraries containing up to 474 constituents. Dynamic deconvolution allowed the efficient identification of the structural features required for binding to Concanavalin A and the selection of a strong binder, a tritopic mannoside, showing an IC(50)-value of 22 microM.  相似文献   

12.
The Huisgen thermal reaction between an organic azide and an acetylene was employed for the selective monofunctionalization of a X6‐azacryptand ligand bearing a tren coordinating unit [X6 stands for calix[6]arene and tren for tris(2‐aminoethyl)amine]. Supramolecular assistance, originating from the formation of a host–guest inclusion complex between the reactants, greatly accelerates the reaction while self‐inhibition affords a remarkable selectivity. The new ligand possesses a single amino‐leg appended at the large rim of the calixarene core and the corresponding Zn2+ complex was characterized both in solution and in the solid state. The coordination of Zn2+ not only involves the tren cap but also the introverted amino‐leg, which locks the metal ion in the cavity. Compared with the parent ligand deprived of the amino‐leg, the affinity of the new monofunctionalized X6tren ligand 6 for Zn2+ is found to have a 10‐fold increase in DMSO, which is a very competitive solvent, and with an enhancement of at least three orders of magnitude in CDCl3/CD3OD (1:1, v/v). In strong contrast with the fast binding kinetics, decoordination of Zn2+ as well as transmetallation appeared to be very slow processes. The monofunctionalized X6tren ligand 6 fully protects the metal ion from the external medium thanks to the combination of a cavity and a closed coordination sphere, leading to greater thermodynamic and kinetic stabilities.  相似文献   

13.
The geometric, energetic, and spectroscopic properties of the ground state and the lowest four singlet excited states of pyrazine have been studied by using DFT/TD‐DFT, CASSCF, CASPT2, and related quantum chemical calculations. The second singlet nπ* state, 1Au, which is conventionally regarded dark due to the dipole‐forbidden 1Au1Ag transition, has been investigated in detail. Our new simulation has shown that the state could be visible in the absorption spectrum by intensity borrowing from neighboring nπ* 1B3u and ππ* 1B2u states through vibronic coupling. The scans on potential‐energy surfaces further indicated that the 1Au state intersects with the 1B2u states near the equilibrium of the latter, thus implying its participation in the ultrafast relaxation process.  相似文献   

14.
Two‐electron reduction of 1,1′‐bis(o‐carborane) followed by reaction with [Ru(η‐mes)Cl2]2 affords [8‐(1′‐1′,2′‐closo‐C2B10H11)‐4‐(η‐mes)‐4,1,8‐closo‐RuC2B10H11]. Subsequent two‐electron reduction of this species and treatment with [Ru(η‐arene)Cl2]2 results in the 14‐vertex/12‐vertex species [1‐(η‐mes)‐9‐(1′‐1′,2′‐closo‐C2B10H11)‐13‐(η‐arene)‐1,13,2,9‐closo‐Ru2C2B10H11] by direct electrophilic insertion, promoted by the carborane substituent in the 13‐vertex/12‐vertex precursor. When arene=mesitylene (mes), the diruthenium species is fluxional in solution at room temperature in a process that makes the metal–ligand fragments equivalent. A unique mechanism for this fluxionality is proposed and is shown to be fully consistent with the observed fluxionality or nonfluxionality of a series of previously reported 14‐vertex dicobaltacarboranes.  相似文献   

15.
Reaction of iron(II), cobalt(II) and nickel(II) selenocyanate with pyrazine in water at room temperature leads to the formation of the isotypic new ligand‐rich 1:2 (1:2 = ratio between metal and co‐ligand) compounds [M(NCSe)2(pyrazine)2]n (M = Fe ( 1 ), Co ( 2 ), Ni ( 3 )). The crystal structure of 2 was determined by X‐ray single crystal analysis and those of 1 and 3 were refined from X‐ray powder data with the Rietveld method. In their crystal structure the metal(II) cations are coordinated by four pyrazine co‐ligands, which connect them into layers, and two terminally N‐bonded selenocyanato anions in a distorted octahedral arrangement. The terminal coordination mode of the selenocyanato anions was further emphasized by IR spectroscopic investigations. On heating, all compounds decompose in a single heating step without the formation of ligand‐deficient intermediates like previously reported for related thiocyanato compounds. Magnetic measurements of compound 1 show a long‐range antiferromagnetic ordering with an ordering temperature of TN = 6.7 K, which must be mediated by the aromatic π‐system of the pyrazine ligand, whereas 2 and 3 show only Curie–Weiss behavior with antiferromagnetic exchange interactions.  相似文献   

16.
The new polymorph of sodium tetraborate HP‐Na2B4O7 was synthesized under high‐pressure / high‐temperature conditions of 6 GPa and 1000 °C in a multianvil apparatus with a Walker‐type module. HP‐Na2B4O7 crystallizes with nine formula units per cell in the trigonal chiral space groups P3221 or P3121. The parameters are a = 765.5(2), c = 2142.3(4) pm, V = 1.0872(3) nm3, R1 = 0.0581, and wR2 = 0.0809 (all data). The crystal structure of HP‐Na2B4O7 is built up from interconnected “sechser” rings of alternating corner‐sharing BO3 and BO4 groups.  相似文献   

17.
Hierarchical porous materials are promising for catalyst, separation and sorption applications. A ligand‐assisted etching process is developed for template‐free synthesis of hierarchical mesoporous MOFs as single crystals and well‐intergrown membranes at 40 °C. At 223 K, the hierarchical porous structures significantly improve the CO2 capture capacity of HKUST‐1 by more than 44 % at pressures up to 20 kPa and 13 % at 100 kPa. Even at 323 K, the enhancement of CO2 uptake is above 25 % at pressures up to 20 kPa and 7 % at 100 kPa. The mesoporous structures not only enhance the CO2 uptake capacity but also improve the diffusion and mass transportation of CO2. Similarly, well‐intergrown mesoporous HKUST‐1 membranes are synthesized, which hold the potential for film‐like porous devices. Mesoporous MOF‐5 crystals are also obtained by a similar ligand‐assisted etching process. This may provide a facile way to prepare hierarchical porous MOF single crystals and membranes for wide‐ranging applications.  相似文献   

18.
Carbon-carbon bonds are integral for pharmaceutical discovery and development. Frequently, CC bond reactions utilize expensive catalyst/ligand combinations and/or are low yielding, which can increase time and expenditures in pharmaceutical development. To enhance CC bond formation protocols, we developed a highly efficient, selective, and combinatorially applicable Friedel-Crafts acylation to acetylate the C-3 position of imidazo[1,2-a]pyridines. The reaction, catalyzed by aluminum chloride, is both cost effective and more combinatorial friendly compared to acetylation reactions requiring multiple, stoichiometric equivalents of AlCl3. The protocol has broad application in the construction of acetylated imidazo[1,2-a]pyridines with an extensive substrate scope. All starting materials are common and the reaction requires inexpensive, conventional heating methods for adaptation in any laboratory. Further, the synthesized compounds are predicted to possess GABA activity through a validated, GABA binding model. The developed method serves as a superior route to generate C-3 acetylated imidazo[1,2-a]pyridine building-blocks for combinatorial synthetic efforts.  相似文献   

19.
In continuation of our recent combinatorial work on 810 X2YZ full Heusler alloys, a computational study of the same class of materials but with the inverse (XY)XZ crystal structure has been performed on the basis of first‐principles (GGA) total‐energy calculations using pseudopotentials and plane waves. The predicted enthalpies of formation evidence 27 phases to be thermochemically stable against the elements and the regular X2YZ type. A chemical‐bonding study yields an inherent tendency for structural distortion in a majority of these alloys, and we predict the existence of the new tetragonal phase Fe2CuGa (P42/ncm; a = 5.072 Å, c = 7.634 Å; c/a ≈ 1.51) with a saturation moment of μ = 4.69 μB per formula unit. Thirteen more likewise new, isotypical phases are predicted to show essentially the same behavior. Six phases turn out to be the most stable in the inverse tetragonal arrangement. The course of the magnetic properties as a function of the valence‐electron concentration is analyzed using a Slater‐Pauling approach. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six‐coordinate silicon(IV ) complexes 4 (previous work) and 8 , respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six‐coordinate silicon(IV ) complex 10 , the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2 , however, yields the five‐coordinate silicon(IV ) complex 13 with a carbon‐bound CS22? ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV ) complexes 5 and 6 with CO2 also affords the six‐coordinate carbonatosilicon(IV ) complexes 4 and 8 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号