首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p‐divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid‐state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl‐fluoro‐phenylene rotors, affecting their motion and the dielectric properties.  相似文献   

2.
Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107 Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107 Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.  相似文献   

3.
Design to store gas molecules, such as CO2, H2, and CH4, under low pressure is one of the most important challenges in chemistry and materials science. Herein, we describe the storage of CO2 in the cavities of a porous coordination polymer (PCP) using molecular rotor dynamics. Owing to the narrow pore windows of PCP, CO2 was not adsorbed at 195 K. As the temperature increased, the rotors exhibited rotational modes; such rotations dynamically expanded the size of the windows, leading to CO2 adsorption. The rotational frequencies of the rotors (k≈10?6 s) and correlation times of adsorbed CO2 (τ≈10?8 s) were elucidated via solid‐state NMR studies, which suggest that the slow rotation of the rotors sterically restricts CO2 diffusion in the pores. This restriction results in an unusually slow CO2 mobility close to solid state (τ≥10?8 s). Once adsorbed at room temperature, CO2 is robustly stored in the PCP under vacuum at 195–233 K because of the steric hindrance of the rotors. We also demonstrate that this mechanism can be applied to the storage of CH4.  相似文献   

4.
Molecular motion in the solid state is typically precluded by the highly dense environment, and only molecules with a limited range of sizes show such dynamics. Here, we demonstrate the solid-state rotational motion of two giant molecules, i.e., triptycene and pentiptycene, by encapsulating a bulky N-heterocyclic carbene (NHC) Au(I) complex in the crystalline media. To date, triptycene is the largest molecule (surface area: 245 Å2; volume: 219 Å3) for which rotation has been reported in the solid state, with the largest rotational diameter among reported solid-state molecular rotors (9.5 Å). However, the pentiptycene rotator that is the subject of this study (surface area: 392 Å2; volume: 361 Å3; rotational diameter: 13.0 Å) surpasses this record. Single-crystal X-ray diffraction analyses of both the developed rotors revealed that these possess sufficient free volume around the rotator. The molecular motion in the solid state was confirmed using variable-temperature solid-state 2H spin-echo NMR studies. The triptycene rotor exhibited three-fold rotation, while temperature-dependent changes of the rotational angle were observed for the pentiptycene rotor.  相似文献   

5.
Two new crystalline rotors 1 and 2 assembled through N−H⋅⋅⋅N hydrogen bonds by using halogenated carbazole as stators and 1,4-diaza[2.2.2]bicyclooctane (DABCO) as the rotator, are described. The dynamic characterization through 1H T1 relaxometry experiments indicate very low rotational activation barriers (Ea) of 0.67 kcal mol−1 for 1 and 0.26 kcal mol−1 for 2 , indicating that DABCO can reach a THz frequency at room temperature in the latter. These Ea values are supported by solid-state density functional theory computations. Interestingly, both supramolecular rotors show a phase transition between 298 and 250 K, revealed by differential scanning calorimetry and single-crystal X-ray diffraction. The subtle changes in the crystalline environment of these rotors that can alter the motion of an almost barrierless DABCO are discussed here.  相似文献   

6.
This work describes the use of C–H⋯F–C contacts in the solid-state from the stator towards the rotator to fine-tune their internal motion, by constructing a set of interactions that generate close-fitting cavities in three supramolecular rotors 1–3I. The crystal structures of these rotors, determined by synchrotron radiation experiments at different temperatures, show the presence of such C–H⋯F–C contacts between extended carbazole stators featuring fluorinated phenyl rings and the 1,4-diazabicyclo[2.2.2]octane (DABCO) rotator. According to the 2H NMR results, using deuterated samples, and periodic density functional theory computations, the rotators experience fast angular displacements (preferentially 120° jumps) due to their low rotational activation energies (Ea = 0.8–2.0 kcal mol−1). The higher rotational barrier for 1 (2.0 kcal mol−1) is associated with a larger number of weak C–H⋯F–C contacts generated by the stators. This strategy offers the possibility to explore the correlation among weak intermolecular forces, cavity shape, and internal dynamics, which has strong implications in the design of future fine-tuned amphidynamic crystals.

This work describes the use of C–H⋯F–C contacts in the solid-state from the stator towards the rotator to fine-tune their internal motion, by constructing a set of interactions that generate close-fitting cavities in three supramolecular rotors 1–3I.  相似文献   

7.
The types of magnetism known to date are all mainly based on contributions from electron motion. We show how rotational motion of protons (H+) within the methyl groups in hexamethylbenzene (C6(CH3)6) also contribute significantly to the magnetic susceptibility. Starting from below 118 K, as the rotational motion of the methyl groups set in, an associated magnetic moment positive in nature due to charge of the protons renders the susceptibility to become anomalously dependent on temperature. Starting from 20 K, the susceptibility diverges with decreasing temperature indicative of spin–spin interactions between methyl groups aligned in a previously unclassified type of anti‐ferromagnetic configuration. Complementary dielectric constant measurements also show the existence of magneto‐dielectric coupling. Our findings allow for the study of strongly correlated systems that are based on a species that possesses much slower dynamics.  相似文献   

8.
Off‐center impurity ions in solids often perform rotations around their regular lattice sites. Unlike quasifree rotors with rotational line spectra subject to textbook attention in quantum mechanics, the off‐center species are hindered rotors with spectra quantized in rotational bands. These bands occur because of tunneling through barriers arising along the orbital path. For an off‐center ion rotating along a planar orbit, such as the Li+ impurity nearest‐neighboring an F center in alkali halide, the hindered rotation will give rise to specific magnetic moments that couple to and quantize external magnetic fields normal to the orbital plane. We present a simple theory and estimates of Li+ magnetic dipoles and rotational bands to find conditions for an experimental verification. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

9.
《Chemphyschem》2003,4(6):588-594
The reorientational dynamics of the ionic liquid 1butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM]PF6) were studied over a wide range of temperatures by measurement of 13C spin–lattice relaxation rates and NOE factors. The reorientational dynamics were evaluated by performing fits to the experimental relaxation data. Thus, the overall reorientational motion was described by a Cole–Davidson spectral density with a Vogel–Fulcher–Tammann temperature dependence of the correlation times. The reorientational motion of the butyl chain was modelled by a combination of the latter model for the overall motion with a Bloembergen–Purcell–Pound spectral density and an Arrhenius temperature dependence for the internal motion. Except for C2 in the aromatic ring, an additional reduction of the spectral density by the Lipari–Szabo model had to be employed. This reduction is a consequence of fast molecular motions before the rotational diffusion process becomes effective. The C2 atom did not exhibit this reduction, because the librational motion of the corresponding C2? H vector is severely hindered due to hydrogen bonding with the hexafluorophosphate anion. The observed dynamic features of the [BMIM]+ cation confirm quantum‐chemical structures obtained in a former study.  相似文献   

10.
Two amphiphilic mono‐ and dimeric GdAAZTA‐like chelates composed of stable bis‐aquo GdIII complexes (q=2) linked to one (for the monomer) or two dodecyl aliphatic chains (for the dimer) were synthesized. Both chelates showed high relaxivity when incorporated into the lipid bilayer of liposomes or after interaction with human serum albumin (HSA). The ditopic complex shows a significantly decreased internal motion relative to the monomeric complex, associated with an enhanced relaxivity (r1≈60 mm ?1 s?1, at 30 MHz and 310 K). The presence of two metal‐bound water molecules in fast exchange and the restricted rotational freedom make the relaxivity of this system the highest measured for paramagnetic liposomes.  相似文献   

11.
《Chemical physics letters》1987,133(6):501-506
The photodissociation dynamics of water in its first absorption band has been studied in detail by photolyzing room-tempera-ture and jet-cooled H2O with an ArF excimer laser at 193 nm. The fate of the ejected OH(X 2Π) photofragments was probed by laser-induced fluorescence. The excess energy is transferred almost exclusively into translational motion of the products, ∂t = 0.97. The rotational distribution depends strongly on the initial temperature. For warm water (T = 300 K), the rotational distribution can be described by a Boltzmann distribution with a temperature parameter of 400 K. No significant difference between the two Λ components, probed via Q and R, P lines, was observed. In the case of jet-cooled H2O the rotational distribution of the Π component of the Λ doublets can be described by a temperature parameter of 330 K; that of the Π+ component strongly deviates from a Boltzmann distribution. The Λ doublet population shows an increasing inversion with increasing JOH. The dissociation process does not distinguish between the two spin-orbit states and the spin is only a spectator in the dissociation process of H2O at 193 nm. These results are compared with observations of the photolysis of water at 157 nm.  相似文献   

12.
Combining recent concepts from the fields of molecular conductivity and molecular machinery we set out to design a crystalline molecular conductor that also possesses a molecular rotor. We report on the structures, electronic and physical properties, and dynamics of two solids with a common 1,4-bis(carboxyethynyl)bicyclo[2.2.2]octane (BABCO) functional rotor. One, [nBu(4)N(+)](2)[BABCO][BABCO(-)](2), is a colorless insulator where the dicarboxylic acid cocrystallizes with two of its monoanionic conjugated bases. The other is self-assembled by electrocrystallization in the form of black, shiny needles, with highly conducting molecular slabs of (EDT-TTF-CONH(2))(2)(+) (EDT-TTF = ethylenedithiotetrathiafulvalene) and anionic [BABCO(-)] rotors. Using variable-temperature (5-300 K) proton spin-lattice relaxation, (1)H T(1)(-1), we were able to assign two types of Brownian rotators in [nBu(4)N(+)](2)[BABCO][BABCO(-)](2). We showed that neutral BABCO groups have a rotational frequency of 120 GHz at 300 K with a rotational barrier of 2.03 kcal mol(-1). Rotors on the BABCO(-) sites experience stochastic 32 GHz jumps at the same temperature over a rotational barrier of 2.72 kcal mol(-1). In contrast, the BABCO(-) rotors within the highly conducting crystals of (EDT-TTF-CONH(2))(2)(+)[BABCO(-)] are essentially "braked" at room temperature. Notably, these crystals possess a conductivity of 5 S cm(-1) at 1 bar, which increases rapidly with pressure up to 50 S cm(-1) at 11.5 kbar. Two regimes with different activation energies E(a) for the resistivity (180 K above 50 and 400 K below) are observed at ambient pressure; a metallic state is stabilized at ca. 8 kbar, and an insulating ground state remains below 50 K at all pressures. We discuss two likely channels by which the motion of the rotors might become slowed down in the highly conducting solid. One is defined as a low-velocity viscous regime inherent to a noncovalent, physical coupling induced by the cooperativity between five C(sp3)-H···O hydrogen bonds engaging any rotor and five BABCO units in its environment. The rotational barrier calculated with the effect of this set of hydrogen bonds amounts to 7.3 kcal mol(-1). Another is quantum dissipation, a phenomenon addressing the difference of dynamics of the rotors in the two solids with different electrical properties, by which the large number of degrees of freedom of the low dimensional electron gas may serve as a bath for the dissipation of the energy of the rotor motion, the two systems being coupled by the Coulomb interaction between the charges of the rotors (local moments and induced dipoles) and the charges of the carriers.  相似文献   

13.
Molecular motion and thermal stability in two series of nanophase‐separated polyimide–silica (PI–SiO2) hybrid materials with chemically bound components were studied. The hybrids were synthesized from p‐aminophenyltrimethoxysilane‐terminated poly(amic acid)s as PI precursors and tetramethoxysilane as a silica precursor via a sol–gel process. The hybrids differed in their PI chemical structure and chain length (number‐average molecular weight = 5.000, 7.500, or 10.000) and in their SiO2 content, which ranged from 0 to 50 wt %. Differential scanning calorimetry, laser‐interferometric creep rate spectroscopy, and thermally stimulated depolarization current techniques were used for studying the dynamics from 100 to 650 K and from 10?3 to 10?2 Hz. Comparative thermogravimetric measurements were also carried out from 300 to 900 K. Silica nano‐ or submicrodomains that formed affected PI dynamics in two opposite directions. Because of the loosening of the molecular packing of PI chains confined to nanometer‐scale spaces between silica constraints, an enhancement of small‐scale motion, mostly at temperatures below the β‐relaxation region, occurred. However, a partial or total suppression of segmental motion could be observed above the β‐relaxation temperature, drastically so for the shortest PI chains at elevated silica contents and within or close to the glass‐transition range, because of the covalent anchoring of chain ends to silica domains. Large changes in thermal stability, including a 2.5‐fold increase in the apparent activation energy of degradation, were observed in the hybrids studied. A greater than 100 °C rise in long‐term thermal stability could be predicted for some hybrids with respect to pure PI. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1056–1069, 2002  相似文献   

14.
The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field electron paramagnetic resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). Two different regimes separated by a crossover region are evidenced. Below 180 K the rotational times are nearly temperature independent with no apparent distribution. In the temperature range of 180-220 K a large increase of the rotational mobility is observed with the widening of the distribution of correlation times which exhibits two components: (i) a deltalike, temperature-independent component representing the fraction of spin probes w which persist in the low-temperature dynamics; (ii) a strongly temperature-dependent component, to be described by a power distribution, representing the fraction of spin probes 1-w undergoing activated motion over an exponential distribution of barrier heights g(E). Above 180 K a steep decrease of w is evidenced. The shape and the width of g(E) do not differ from the reported ones for PS within the errors. For the first time the large increase of the rotational mobility of the spin probe at 180 K is ascribed to the onset of the fast dynamics detected by neutron scattering at T(f)=175+/-25 K.  相似文献   

15.
Rotating surface-mounted molecules have attracted attention of many research groups as a way to develop new nanoscale devices and materials. However, mechanisms of motion of these rotors at the single-molecule level are still not well understood. Theoretical and experimental studies on thioether molecular rotors on gold surfaces suggest that the size of the molecules, their flexibility and steric repulsions with the surface are important for dynamics of the system. A complex combination of these factors leads to the observation that the rotation speeds have not been hindered by increasing the length of the alkyl chains. However, experiments on diferrocene derivatives indicated that a significant increase in the rotational barriers for longer molecules. We present here a comprehensive theoretical study that combines molecular dynamics simulations and simple models to investigate what factors influence single-molecule rotations on the surfaces. Our results suggest that rotational dynamics is determined by the size and by the symmetry of the molecules and surfaces, and by interactions with surfaces. Our theoretical predictions are in excellent agreement with current experimental observations.  相似文献   

16.
The simple preparation of the multicomponent devices [Cu4( A )2]4+ and [Cu2( A )( B )]2+, both rotors with fluxional axles undergoing domino rotation, highlights the potential of self‐sorting. The concept of domino rotation requires the interconversion of axle and rotator, allowing the spatiotemporal decoupling of two degenerate exchange processes in [Cu4( A )2]4+ occurring at 142 kHz. Addition of two equiv of B to rotor [Cu4( A )2]4+ afforded the heteromeric two‐axle rotor [Cu2( A )( B )]2+ with two distinct exchange processes (64.0 kHz and 0.55 Hz). The motion requiring a pyridine→zinc porphyrin bond cleavage is 1.2×105 times faster than that operating via a terpyridine→[Cu(phenAr2)]+ rupture. Finally, both rotors are catalysts due to their copper(I) content. The fast domino rotor (142 kHz) was shown to suppress product inhibition in the catalysis of the azide–alkyne Huisgen cycloaddition.  相似文献   

17.
Single‐molecule imaging and manipulation with optical microscopy have become essential methods for studying biomolecular machines; however, only few efforts have been directed towards synthetic molecular machines. Single‐molecule optical microscopy was now applied to a synthetic molecular rotor, a double‐decker porphyrin (DD). By attaching a magnetic bead (ca. 200 nm) to the DD, its rotational dynamics were captured with a time resolution of 0.5 ms. DD showed rotational diffusion with 90° steps, which is consistent with its four‐fold structural symmetry. Kinetic analysis revealed the first‐order kinetics of the 90° step with a rate constant of 2.8 s?1. The barrier height of the rotational potential was estimated to be greater than 7.4 kJ mol?1 at 298 K. The DD was also forcibly rotated with magnetic tweezers, and again, four stable pausing angles that are separated by 90° were observed. These results demonstrate the potency of single‐molecule optical microscopy for the elucidation of elementary properties of synthetic molecular machines.  相似文献   

18.
(1)H spin-lattice relaxation rates in glycerol solutions of selected nitroxide radicals at temperatures between 200 K and 400 K were measured at 15 MHz and 25 MHz. The frequency and temperature conditions were chosen in such a way that the relaxation rates go through their maximum values and are affected by neither the electron spin relaxation nor the electron-nitrogen nucleus hyperfine coupling, so that the focus could be put on the mechanisms of motion. By comparison with (1)H spin-lattice relaxation results for pure glycerol, it has been demonstrated that the inter-molecular electron spin-proton spin dipole-dipole interactions are affected not only by relative translational motion of the solvent and solute molecules, but also by their rotational dynamics as the interacting spins are displaced from the molecular centers; the eccentricity effects are usually not taken into account. The (1)H relaxation data have been decomposed into translational and rotational contributions and their relative importance as a function of frequency and temperature discussed in detail. It has been demonstrated that neglecting the rotational effects on the inter-molecular interactions leads to non-realistic conclusions regarding the translational dynamics of the paramagnetic molecules.  相似文献   

19.
Crankshaft motion has been proposed in the solid state for molecular fragments consisting of three or more rotors linked by single bonds, whereby the two terminal rotors are static and the internal rotors experience circular motion. Bis-[tri-(3,5-di-tert-butyl)phenylmethyl]-peroxide 2 was tested as a model in search of crankshaft motion at the molecular level. In the case of peroxide 2, the bulky trityl groups may be viewed as the external static rotors, while the two peroxide oxygens can undergo the sought after internal rotation. Evidence for this process in the case of peroxide 2 was obtained from conformational dynamics determined by variable-temperature (13)C and (1)H NMR between 190 and 375 K in toluene-d(8). Detailed spectral assignments for the interpretation of two coalescence processes were based on a correlation between NMR spectra obtained in solution at low temperature, in the solid state by (13)C CPMAS NMR, and by GIAO calculations based on a B3LYP/6-31G structure of 2 obtained from its X-ray coordinates as the input. Evidence supporting crankshaft rotation rather than slippage of the trityl groups was obtained from molecular mechanics calculations.  相似文献   

20.
Because of its importance in viral replication, the M2 proton channel of the influenza A virus has been the focus of many studies. Although we now know a great deal about the structural architecture underlying its proton conduction function, we know little about its conformational dynamics, especially those controlling the rate of this action. Herein, we employ a single‐molecule fluorescence method to assess the dynamics of the inter‐helical channel motion of both full‐length M2 and the transmembrane domain of M2. The rate of this motion depends not only on the identity of the channel and membrane composition but also on the pH in a sigmoidal manner. For the full‐length M2 channel, the rate is increased from approximately 190 μs−1 at high pH to approximately 80 μs−1 at low pH, with a transition midpoint at pH 6.1. Because the latter value is within the range reported for the conducting pK a value of the His37 tetrad, we believe that this inter‐helical motion accompanies proton conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号