首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p‐divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid‐state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl‐fluoro‐phenylene rotors, affecting their motion and the dielectric properties.  相似文献   

5.
6.
7.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   

8.
Two stable, non‐interpenetrated MOFs, PCN‐521 and PCN‐523, were synthesized by a symmetry‐guided strategy. Augmentation of the 4‐connected nodes in the fluorite structure with a rigid tetrahedral ligand and substitution of the 8‐connected nodes by the Zr/Hf clusters yielded MOFs with large octahedral interstitial cavities. They are the first examples of Zr/Hf MOFs with tetrahedral linkers. PCN‐521 has the largest BET surface area (3411 m2 g‐1), pore size (20.5×20.5×37.4 Å) and void volume (78.5%) of MOFs formed from tetrahedral ligands. This work not only demonstrates a successful implementation of rational design of MOFs with desired topology, but also provides a systematic way of constructing non‐interpenetrated MOFs with high porosity.  相似文献   

9.
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions.  相似文献   

10.
Efficient reactions between fluorine‐functionalised biphenyl and terphenyl derivatives with catechol‐functionalised terminal groups provide a route to large, discrete organic molecules of intrinsic microporosity (OMIMs) that provide porous solids solely by their inefficient packing. By altering the size and substituent bulk of the terminal groups, a number of soluble compounds with apparent BET surface areas in excess of 600 m2 g?1 are produced. The efficiency of OMIM structural units for generating microporosity is in the order: propellane>triptycene>hexaphenylbenzene>spirobifluorene>naphthyl=phenyl. The introduction of bulky hydrocarbon substituents significantly enhances microporosity by further reducing packing efficiency. These results are consistent with findings from previously reported packing simulation studies. The introduction of methyl groups at the bridgehead position of triptycene units reduces intrinsic microporosity. This is presumably due to their internal position within the OMIM structure so that they occupy space, but unlike peripheral substituents they do not contribute to the generation of free volume by inefficient packing.  相似文献   

11.
12.
吴选军  郑佶  李江  蔡卫权 《物理化学学报》2013,29(10):2207-2214
采用优化的DREIDING力场参数, 通过巨正则系综蒙特卡洛(GCMC)模拟方法对H2在IRMOF-1、IRMOF-61和IRMOF-62共3种金属有机骨架(MOFs)材料中的吸附平衡性能进行了比较研究. 结果表明, 该力场能够在全压力范围内很好地复制H2在IRMOF-62材料中的等温吸附曲线; 但对低压下H2在IRMOF-61中的等温吸附曲线预测出现低估. 与IRMOF-1相比, 具有互穿骨架结构的IRMOF-61和IRMOF-62材料在常温下的储氢能力并无明显提高. 进一步比较77 K时100 kPa、3.0 MPa下H2在上述MOFs材料中达到吸附平衡时的几率密度分布发现, H2会优先吸附在Zn4O骨架附近靠近苯环的位置;对具有互穿结构的MOFs材料而言,由于其孔腔尺寸缩小, 使得H2优先吸附位区域零散化. 适当长度的有机配体形成的互穿骨架结构能增强与H2分子之间的相互作用, 具备较高的储氢能力; 而有机配体尺寸过长则会增加骨架结构中H2吸附死角, 对H2的吸附能力反而出现下降.  相似文献   

13.
利用水热法合成了Ti SAPO-34分子筛,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附、紫外-可见漫反射吸收光谱(UV-Vis DRS)、热重(TG)等方法对其形貌、物相组成、孔径等进行表征。以亚甲基蓝的水溶液模拟污染物评价Ti SAPO-34分子筛吸附性能,考察了钛的掺杂量及样品再生后对亚甲基蓝吸附性能的影响。结果表明:样品形貌为球形,是一种微孔分子筛,具有较好的热稳定性。样品中部分Ti原子成功进入骨架,仍保持了SAPO-34分子筛的骨架结构。在190℃晶化24 h得到的样品吸附性能较好,0.3 g样品吸附1 h对0.01 g·L~(-1)亚甲基蓝的水溶液模拟污染物吸附率达到80%。  相似文献   

14.
15.
16.
The effective capture and storage of volatile molecular iodine from nuclear waste is of great significance. Covalent organic frameworks (COFs) are a class of extended crystalline porous polymers that possess unique architectures with high surface areas, long-range order, and permanent porosity. Substantial efforts have been devoted to the design and synthesis of COF materials for the capture of radioactive iodine. In this review, we first introduce research techniques for determining the mechanism of iodine capture by COF materials. Then, the influencing factors of iodine capture performance are classified, and the design principles and strategies for constructing COFs with potential for iodine capture are summarized on this basis. Finally, our personal insights on remaining challenges and future trends are outlined, in order to bring more inspiration to this hot topic of research.  相似文献   

17.
We report two new 3D structures, [Zn3(bpdc)3(2,2′‐dmbpy)] (DMF)x(H2O)y ( 1 ) and [Zn3(bpdc)3(3,3′‐dmbpy)]?(DMF)4(H2O)0.5 ( 2 ), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4?(H2O) ( 3 ) (bpdc=biphenyl‐4,4′‐dicarboxylic acid; z,z′‐dmbpy=z,z′‐dimethyl‐4,4′‐bipyridine; bpy=4,4′‐bipyridine). Single‐crystal X‐ray diffraction analysis indicates that 2 is isostructural to 3 , and the power X‐ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3 . Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2′‐ or 3,3′‐dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas‐adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1′ (guest‐free 1 ) indicate significant enhancement in CO2 uptake, whereas for 2′ (guest‐free 2 ) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1′ , the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3′ (guest‐free 3 ). For 2′ , the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3′ . IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl‐functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.  相似文献   

18.
By synthesizing derivatives of a trans‐1,2‐diaminocyclohexane precursor, three new functionalized porous organic cages were prepared with different chemical functionalities on the cage periphery. The introduction of twelve methyl groups ( CC16 ) resulted in frustration of the cage packing mode, which more than doubled the surface area compared to the parent cage, CC3 . The analogous installation of twelve hydroxyl groups provided an imine cage ( CC17 ) that combines permanent porosity with the potential for post‐synthetic modification of the cage exterior. Finally, the incorporation of bulky dihydroethanoanthracene groups was found to direct self‐assembly towards the formation of a larger [8+12] cage, rather than the expected [4+6], cage molecule ( CC18 ). However, CC18 was found to be non‐porous, most likely due to cage collapse upon desolvation.  相似文献   

19.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号