首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A new class of tetrathiafulvalene‐based microstructures fabricated by coordinative self‐assembly has been prepared by a solution process. Upon incorporation of Pb2+ and Zn2+ ions, 1D wirelike microstructures and spherical polymer particles were achieved, respectively (see picture). The neutral coordination polymers are conductive and magnetic at room temperature without external manipulation.

  相似文献   


4.
5.
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell.  相似文献   

6.
Herein, the universal design of high‐efficiency stimuli‐responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli‐triggered TADF switching for a series of carbazole–isophthalonitrile‐based donor–acceptor (D–A) luminogens is demonstrated based on systematic photophysical and X‐ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D–A twisting in the excited‐state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light‐emitting diodes using a single TADF emitter.  相似文献   

7.
Solid‐state acid‐responsive materials are promising for the tunability of their intrinsic properties. However, the relationship between molecular structure and emission shift as a response to acid stimuli has not been systematically studied. Herein, we report the effect of protonation and subsequent intramolecular hydrogen bonding on the photophysical properties of compounds (MPP‐s, MPP‐d, and MPP‐d‐CN) with different conjugation modes between the electron‐donating dimethoxyl phenyl and the electron‐withdrawing benzothiazole ring. The results established that the stronger the intramolecular charge transfer feature of the compound, the smaller is the emission shift after acid stimuli. Our studies also indicated that the conjugation mode significantly affected the solid‐state packing mode: MPP‐s and MPP‐d tended to form dimers, while MPP‐d‐CN exhibited the strongest aggregation‐induced emission enhancement (AIEE). The exploration of structure‐property relationship would provide experimental and theoretical guidance in designing acid‐responsive molecular switches and developing high‐performance AIEE‐active luminogens.  相似文献   

8.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.

  相似文献   


9.
10.
The fluctuations of orientation and induction interactions in solution and their impact on the broadening of absorption and fluorescence spectra are considered in terms of a bands‐of‐energy model. Also covered is the application of principles of thermodynamics and self‐organization of systems for calculation of solvatochromic shift, among them a component owing to the work on electronic polarization of solvent at the instant of electronic transition in the solute. The findings on solvatochromic shift and spectral broadening open the way to the calculation of solvent effects on the rate constant of nonradiative transitions. As demonstrated herein for 15 fluorophores, the novel theory of nonradiative decay of the intramolecular charge‐transfer excited states is carried out for dyes and organic compounds of different nature, both for polar and nonpolar media.  相似文献   

11.
Ureido‐pyrimidinone (UPy) dimers substituted with an additional urea functionality self‐assemble into one‐dimensional stacks in various solvents through lateral non‐covalent interactions. 1H NMR and DOSY studies in CDCl3 suggest the formation of short stacks (<10), whereas temperature‐dependent circular dichroism (CD) studies on chiral UPy dimers in heptane show the formation of much larger helical stacks. Analysis of the concentration‐dependent evolution of chemical shift in CDCl3 and the temperature‐dependent CD effect in heptane suggest that this self‐assembly process follows an isodesmic pathway in both solvents. The length of the aggregates is influenced by substituents attached to the urea functionality. In sharp contrast, UPy dimers carrying an additional urethane group do not self‐assemble into ordered stacks, as is evident from the absence of a CD effect in heptane and the concentration‐independent chemical shift of the alkylidene proton of the pyrimidinone ring in CDCl3.  相似文献   

12.
A substituted poly(phenylacetylene) derivative (PPAHB) with two hydroxymethyl groups at the meta position of the side phenyl ring was examined as a conformation‐switchable helical spring polymer that responds to solvent and heat stimuli in a precisely controlled manner. Intramolecular hydrogen bonds, which cause the helical structure of the polymer, were broken and re‐formed by adjusting the hydrogen‐bonding strength values (pKHB) of various combinations of solvents or by varying the temperature. In this process, a reversible conformational change from ciscisoid to cistransoid, accompanied by a phase transition in the form of a helix‐coil transformation occurred, with the polymer exhibiting critical changes of color fading and recovery in specific environments. These results demonstrate that PPAHB can be used as either a pKHB indicator or a thermometer. The color changes of the polymer solution are described in detail based on spectroscopic analyses and thermodynamic considerations.  相似文献   

13.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular duplex bearing red‐emitting perylene diimide (PDI) fluorophores, namely PDIHB , was synthesized, and its molecular structure was confirmed by 1H NMR, 13C NMR, TOF‐MS and 2D NMR. Compared with the small molecular reference compound PDI , PDIHB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oligoamide strands in PDIHB could trigger effective spatial separation between guest and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue‐emitting host 2TPhNIHB and red guest PDIHB in the 2 wt% guest/host blending film. As a result, a solution‐processed organic light‐emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/ PDIHB (2 wt%): 2TPhNIHB (50 nm)/LiF (0.8 nm)/Al (100 nm) could emit bias‐independent warm‐white electroluminescence with stable Commission Internationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cd·m?2 and 0.49 cd·A?1, respectively. All these results indicated that HB self‐assembly supramolecular fluorophores could act as prospective materials for white OLED application.  相似文献   

14.
15.
The reversible in situ formation of a self‐assembly building block (naphthalenediimide (NDI)–dipeptide conjugate) by enzymatic condensation of NDI‐functionalized tyrosine ( NDI‐Y ) and phenylalanine‐amide ( F‐NH2 ) to form NDI‐YF‐NH2 is described. This coupled biocatalytic condensation/assembly approach is thermodynamically driven and gives rise to nanostructures with optimized supramolecular interactions as evidenced by substantial aggregation induced emission upon assembly. Furthermore, in the presence of di‐hydroxy/alkoxy naphthalene donors, efficient charge‐transfer complexes are produced. The dynamic formation of NDI‐YF‐NH2 and electronic and H‐bonding interactions are analyzed and characterized by different methods. Microscopy (TEM and AFM) and rheology are used to characterize the formed nanostructures. Dynamic nanostructures, whose formation and function are driven by free‐energy minimization, are inherently self‐healing and provide opportunities for the development of aqueous adaptive nanotechnology.  相似文献   

16.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   

17.
Self‐assembly of a series of carboxylic acid‐functionalized naphthalene diimide (NDI) chromophores with a varying number (n=1–4) of methylene spacers between the NDI ring and the carboxylic acid group has been studied. The derivatives show pronounced aggregation due to the synergistic effects of H‐bonding between the carboxylic acid groups in a synsyn catemer motif and π stacking between the NDI chromophores. Solvent‐dependent UV/Vis studies reveal the existence of monomeric dye molecules in a “good” solvent such as chloroform and self‐assembly in “bad” solvents such as methylcyclohexane. The propensity of self‐assembly is comparable for all samples. Temperature‐dependent spectroscopic studies show high thermal stability of the H‐bonding‐mediated self‐assembled structures. In the presence of a protic solvent such as MeOH, self‐assembly can be suppressed, suggesting a decisive role of H‐bonding, whereas π stacking is more a consequence of than a cause for self‐assembly. Synsyn catemer‐type H‐bonding is supported by powder XRD studies and the results corroborate well with DFT calculations. The morphology as determined by AFM is found to be dependent on the value of n; with increasing n, the morphology gradually shifts from 2D nanosheets to 1D nanofibers. Emission spectra show sharp emission bands with relatively small Stokes shifts. In addition, a rather broad emission band is observed at longer wavelengths because of the in situ formation of excimer‐type species. Due to such a heterogeneous nature, the emission spectrum spans almost the entire red–green–blue region. Depending on the value of n, the ratio of intensities of the two emission bands is changed, which results in a tunable luminescent color. Furthermore, in the case of n=1 and 3, almost pure white light emission is observed. Time‐resolved photoluminescence spectra show a very short lifetime (a few picoseconds) of monomeric dye molecules and biexponential decays with longer lifetimes (on the order of nanoseconds) for aggregated species. Current–voltage measurements show electrical conductivity in the range of 10?4 S cm?1 for the aggregated chromophores, which is four orders of magnitude higher than the value for a structurally similar NDI control molecule lacking the H‐bonding functionality.  相似文献   

18.
We report on a molecularly tailored 1:1 donor–acceptor (D‐A) charge‐transfer (CT) cocrystal that manifests strongly red‐shifted CT luminescence characteristics, as well as noteworthy reconfigurable self‐assembling behaviors. A loosely packed molecular organization is obtained as a consequence of the noncentrosymmetric chemical structure of molecule A1 , which gives rise to considerable free volume and weak intermolecular interactions. The stacking features of the CT complex result in an external stimuli‐responsive molecular stacking reorganization between the mixed and demixed phases of the D‐A pair. Accordingly, high‐contrast fluorescence switching (red?blue) is realized on the basis of the strong alternation of the electronic properties between the mixed and demixed phases. A combination of structural, spectroscopic, and computational studies reveal the underlying mechanism of this stimuli‐responsive behavior.  相似文献   

19.
Self‐assembly of pyrene butyric acid (PBA) and 2,4,7‐trinitro‐9H‐fluoren‐9‐one (TNF) directed by a pyridine‐linked cholesterol unit resulted in the formation of a conducting material (1.9472×10?4 S Cm?1) due to the formation of 1 D nanofibers. X‐ray diffraction, IR, and atomic force microscopic (AFM) techniques were used to establish the mechanism of the self‐assembly of the multicomponent gels. Results indicate efficient charge transfer in the 1 D nanofibers, assisted by hydrogen bonding.  相似文献   

20.
The geometric structures, infrared spectra and hydrogen bond binding energies of the various hydrogen‐bonded Res?‐water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods, respectively. Based on the changes of the hydrogen bond lengths and binding energies as well as the spectral shifts of the vibrational mode of the hydroxyl groups, it is demonstrated that hydrogen bonds HB‐II, HB‐III and HB‐IV are strengthened while hydrogen bond HB‐I is weakened in the four singly hydrogen‐bonded Res?‐Water complexes upon photoexcitation. When the four hydrogen bonds are formed simultaneously between one resorufin anion and four water molecules in the Res?‐4Water complex, all the hydrogen bonds are weakened in both the ground and excited states compared with those in the corresponding singly hydrogen‐bonded Res?‐Water complexes. Furthermore, in complex Res?‐4Water, hydrogen bonds HB‐II and HB‐IV are strengthened while hydrogen bonds HB‐I and HB‐III are weakened after the electronic excitation. The hydrogen bond strengthening and weakening in the various hydrogen‐bonded Res?‐water complexes should be due to the redistribution of the charges among the four heteroatoms (O1‐3 and N1) within the resorufin molecule upon the optical excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号