首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The synthesis of titanium–carboxylate metal–organic frameworks (MOFs) is hampered by the high reactivity of the commonly employed alkoxide precursors. Herein, we present an innovative approach to titanium‐based MOFs by the use of titanocene dichloride to synthesize COK‐69, the first breathing Ti MOF, which is built up from trans‐1,4‐cyclohexanedicarboxylate linkers and an unprecedented [TiIV33‐O)(O)2(COO)6] cluster. The photoactive properties of COK‐69 were investigated in depth by proton‐coupled electron‐transfer experiments, which revealed that up to one TiIV center per cluster can be photoreduced to TiIII while preserving the structural integrity of the framework. The electronic structure of COK‐69 was determined by molecular modeling, and a band gap of 3.77 eV was found.  相似文献   

2.
Treatment of the digallium compound R2Ga–GaR2 [ 1 , R = CH(SiMe3)2] with a broad variety of functionalized carboxylic acids in the presence of water yielded μ‐hydroxo‐μ‐carboxylatodigallium compounds ( 2 – 10 ) containing intact Ga–Ga bonds in high to moderate yields. The compounds form dimeric formula units in which the unsupported Ga–Ga bonds are bridged by two hydroxo and two carboxylato ligands. Each gallium atom is terminally coordinated by a bulky alkyl group. NMR spectroscopy revealed mixtures of two isomeric compounds in solution in all cases. The second component may show a different bridging mode with each Ga–Ga bond bridged by a bidentate carboxylato ligand to form Ga2O2C five‐membered heterocycles.  相似文献   

3.
4.
5.
6.
The Reactions of tBu2P–P=P(Me)tBu2 and (Me3Si)tBuP–P=P(Me)tBu2 with PR3 tBu2P–P=P(Me)tBu2 ( 1 ) reacts at 20 °C with PMe3, PEt3, P(c‐Hex)3, P(p‐Tol)3, PPh2Me, PPh2Et, PPhEt2, PPh2iPr, PPh3 and P(NEt2)3 yielding tBu2P–P=PR3 and tBu2PMe; however, PtBu3, PtBu2(SiMe3) and tBu2PCl don't. tBu2PH and 1 form tBu2P–PH–PtBu2 which yields tBu2P–P=PEt3 when treated with PEt3. Ph2PH, tBuPH2, PH3, Ph2PCl and EtOH don't substitute the tBu2PMe group in 1 , instead, the molecule is decomposed. With PEt3, (Me3Si)tBuP–P=P(Me)tBu2 forms (Me3Si)tBuP–P=PEt3. The compounds tBu2P–P=PR3 decompose at 20 °C to different degrees giving P‐rich consecutive products of the phosphinophosphinidene.  相似文献   

7.
8.
9.
Two Ln26@CO3 (Ln=Dy and Tb) cluster‐based lanthanide–transition‐metal–organic frameworks (Ln MOFs) formulated as [Dy26Cu3(Nic)24(CH3COO)8(CO3)11(OH)26(H2O)14]Cl ? 3 H2O ( 1 ; HNic=nicotinic acid) and [Tb26NaAg3(Nic)27(CH3COO)6(CO3)11(OH)26Cl(H2O)15] ? 7.5 H2O ( 2 ) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å3, whereas 2 crystallizes in the triclinic space group P with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å3. Structural analysis indicates the framework of 1 is a 3D perovskite‐like structure constructed out of CO3@Dy26 building units and Cu+ centers by means of nicotinic acid ligand bridging. In 2 , however, nanosized CO3@Tb26 units and [Ag3Cl]2+ centers are connected by Nic? bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d–4f cluster‐based MOF is quite rare as most of the reported analogous compounds are 3d–4f ones. Additionally, the solid‐state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic? to Tb3+ ions, which we called the “antenna effect”. Compound 2 shows a good two‐photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM?1 (1 GM=10?50 cm4 s photon?1), which indicates that compound 2 might be a good choice for third‐order nonlinear optical materials.  相似文献   

10.
The paraelectric–ferroelectric phase transition in two isostructural metal–organic frameworks (MOFs) [NH4][M(HCOO)3] (M=Mg, Zn) was investigated by in situ variable‐temperature 25Mg, 67Zn, 14N, and 13C solid‐state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder–order transition of NH4+ cations causes a change in dielectric properties. It is thought that [NH4][Mg(HCOO)3] exhibits a higher transition temperature than [NH4][Zn(HCOO)3] due to stronger hydrogen‐bonding interactions between NH4+ ions and framework oxygen atoms. 25Mg and 67Zn NMR parameters are very sensitive to temperature‐induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric–ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although 25Mg and 67Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal‐atom environments in [NH4][M(HCOO)3] give rise to relatively narrow spectra that can be acquired in 30–60 min at a low magnetic field of 9.4 T. Complementary 14N and 13C SSNMR experiments were performed to probe the role of NH4+–framework hydrogen bonding in the paraelectric–ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4][M(HCOO)3] system and shows great potential for molecular‐level studies on electric phenomena in a wide variety of MOFs.  相似文献   

11.
12.
13.
14.
SiO2‐supported Cr–V bimetallic catalyst can be used for producing bimodal polyethylene which can be applied for high‐performance pipe material. Alkyl aluminum are used to prereduce the bimetallic catalysts, and the effects of alkyl aluminum for the bimetallic catalyst are fully studied by catalyst characterization, polymerization kinetics, and the properties of polymer product by the comparison with the catalyst without prereduction. The result shows that the optimum polymerization activity is almost double after the catalyst is prereduced by triisobutylaluminum (TIBA), and the needed dosage of alkyl aluminum also is decreased significantly. The alkyl aluminum of the prereduced catalyst can also act as a chain transfer agent, significantly reducing the molecular weight of the polymer. The diethylaluminum chloride (DEAC) is mostly deactivating the Cr species during the ethylene polymerization. The synthesized catalysts, prereduced by TIBA, triethylaluminum (TEA), and DEAC, all exhibited good hydrogen response and comonomer interposition ability, which will be favorable for the further application of the bimetallic catalyst in the industrial field.

  相似文献   


15.
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions.  相似文献   

16.
17.
The A‐site mixed‐ammonium solid solutions of metal–organic perovskites [(NH2NH3)x(CH3NH3)1?x][Mn(HCOO)3] (x=1.00–0.67) exhibit para‐ to ferroelectric diffuse phase transitions with lowered transition temperatures from x=1.00 to 0.67. These properties are due to the decreased framework distortion and polarization in their low temperature ferroelectric phases caused by the increased CH3NH3+ concentration.  相似文献   

18.
The spatial distribution of different linkers within mixed‐linker metal–organic frameworks crucially influences the properties of such materials. A simple and robust approach based on 1H spin‐diffusion magic‐angle‐spinning nuclear magnetic resonance measurements and modeling of spin‐diffusion curves is presented; this approach facilitates the distinction between homogeneous and clustered distributions. The performance of the approach is demonstrated with an example of an aluminum‐based metal–organic material DUT‐5, which has framework consisting of biphenyl and bipyridyl dicarboxylic linkers. The distribution is shown to be homogeneous in this material. The approach could be applied to studying other spatially disordered crystalline materials.  相似文献   

19.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

20.
Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g?1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg?1 and excellent peak current density (29.8 mA cm?2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号