首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A metal‐free, Lewis acid promoted intramolecular aminocyanation of alkenes was developed. B(C6F5)3 activates N‐sulfonyl cyanamides, thus leading to a formal cleavage of the N CN bonds in conjunction with vicinal addition of sulfonamide and nitrile groups across an alkene. This method enables atom‐economical access to indolines and tetrahydroquinolines in excellent yields, and provides a complementary strategy for regioselective alkene difunctionalizations with sulfonamide and nitrile groups. Labeling experiments with 13C suggest a fully intramolecular cyclization pattern due to the lack of label scrambling in double crossover experiments. Catalysis with Lewis acid is realized and the reaction can be conducted under air.  相似文献   

2.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N][Me4N+] and [Ph3C][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (CO and CN) in the hydroamination of Ar NCO and R NCN R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated CC bonds in H2CCHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

3.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N?][Me4N+] and [Ph3C?][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (C?O and C?N) in the hydroamination of Ar? N?C?O and R? N?C?N? R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated C?C bonds in H2C?CHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

4.
A copper‐catalyzed three‐component reaction of alkenes, acetonitrile, and sodium azide afforded γ‐azido alkyl nitriles by formation of one C(sp3)−C(sp3) bond and one C(sp3)−N bond. The transformation allows concomitant introduction of two highly versatile groups (CN and N3) across the double bond. A sequence involving the copper‐mediated generation of a cyanomethyl radical and its subsequent addition to an alkene, and a C(sp3)−N bond formation accounted for the reaction outcome. The resulting γ‐azido alkyl nitrile can be easily converted into 1,4‐diamines, γ‐amino nitriles, γ‐azido esters, and γ‐lactams of significant synthetic value.  相似文献   

5.
The interaction between the peri substituents in the title compound, C18H18N2O2, measured at 150 K, represents an early stage in the addition reaction of an amino group to an electron‐deficient alkene, and has an N?Csp2 separation of 2.531 (2) Å; comparison with related structures indicates that the nitrile group activates an alkene to nucleophilic attack more than a coplanar carboxyl­ic ester group.  相似文献   

6.
This work demonstrates how photoredox‐mediated C(sp3)?H activation through radical translocation can be combined with asymmetric catalysis. Upon irradiation with visible light, α,β‐unsaturated N‐acylpyrazoles react with N‐alkoxyphthalimides in the presence of a rhodium‐based chiral Lewis acid catalyst and the photosensitizer fac‐[Ir(ppy)3] to provide a C?C bond‐formation product with high enantioselectivity (up to 97 % ee) and, where applicable, with some diastereoselectivity (3.0:1 d.r.). Mechanistically, the synthetic strategy exploits a radical translocation (1,5‐hydrogen transfer) from an oxygen‐centered to a carbon‐centered radical with a subsequent stereocontrolled radical alkene addition.  相似文献   

7.
The design and gram‐scale synthesis of a cyclohexa‐1,4‐diene‐based surrogate of isobutene gas is reported. Using the highly electron‐deficient Lewis acid B(C6F5)3, application of this surrogate in the hydromethallylation of electron‐rich styrene derivatives provided sterically congested quaternary carbon centers. The reaction proceeds by C(sp3)?C(sp3) bond formation at a tertiary carbenium ion that is generated by alkene protonation. The possibility of two concurrent mechanisms is proposed on the basis of mechanistic experiments using a deuterated surrogate.  相似文献   

8.
We report nuclear spin hyperpolarization of various alkenes achieved in alkyne hydrogenations with parahydrogen over a metal-free hydroborane catalyst (HCAT). Being an intramolecular frustrated Lewis pair aminoborane, HCAT utilizes a non-pairwise mechanism of H2 transfer to alkynes that normally prevents parahydrogen-induced polarization (PHIP) from being observed. Nevertheless, the specific spin dynamics in catalytic intermediates leads to the hyperpolarization of predominantly one hydrogen in alkene. PHIP enabled the detection of important HCAT-alkyne-H2 intermediates through substantial 1H, 11B and 15N signal enhancement and allowed advanced characterization of the catalytic process.  相似文献   

9.
S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans‐[LA‐O‐N=N‐O‐LA]2? [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N?N coupling prior to loss of RSSR.  相似文献   

10.
2‐Acylated 2,3,1‐benzodiazaborines can display unusual structures and reactivities. The crystal structure analysis of the boron heterocycle obtained by condensing 2‐formylphenylboronic acid and picolinohydrazide reveals it to be an N→B‐chelated zwitterionic tetracycle (systematic name: 1‐hydroxy‐11‐oxo‐9,10,17λ5‐triaza‐1λ4‐boratetracyclo[8.7.0.02,7.012,17]heptadeca‐3,5,7,12,14,16‐hexaen‐17‐ylium‐1‐uide), C13H10BN3O2, produced by the intramolecular addition of the Lewis basic picolinoyl N atom of 1‐hydroxy‐2‐(pyridin‐2‐ylcarbonyl)benzo[d][1,2,3]diazaborinine to the boron heterocycle B atom acting as a Lewis acid. Neither of the other two pyridinylcarbonyl isomers (viz. nicotinoyl and isonicotinoyl) are able to adopt such a structure for geometric reasons. A favored yet reversible chelation equilibrium provides an explanation for the slow D2O exchange observed for the OH resonance in the 1H NMR spectrum, as well as for its unusual upfield chemical shift. Deuterium exchange may take place solely in the minor open (unchelated) species present in solution.  相似文献   

11.
The RhII‐catalyzed oxyamination and diamination of alkenes generate 1,2‐amino alcohols and 1,2‐diamines, respectively, in good to excellent yields and with complete regiocontrol. In the case of diamination, the intramolecular reaction provides an efficient method for the preparation of pyrrolidines, and the intermolecular reaction produces vicinal amines with orthogonal protecting groups. These alkene difunctionalizations proceed by aziridination followed by nucleophilic ring opening induced by an Rh‐bound nitrene generated in situ, details of which were uncovered by both experimental and theoretical studies. In particular, DFT calculations show that the nitrogen atom of the putative [Rh]2=NR metallanitrene intermediate is electrophilic and support an aziridine activation pathway by N ??? N=[Rh]2 bond formation, in addition to the N ??? [Rh]2=NR coordination mode.  相似文献   

12.
Phenylsulphenamides react chemoselectively with an alkene and a nitrile in the presence of trifluoromethanesulphonic acid to give N-(β-phenylthioalkyl) amidines; in the absence of nitrile an amine is formed.Regioselective 1,2-difunctionalization of alkenes with a nitrogen nucleophile and an alkylthio1?3 or alkylseleno1,4 group has attracted a good deal of interest recently, because it presents a simple answer to the lack of nitrogen electrophiles capable of attacking a weak nucleophile such as an alkene.5 Reductive or oxidative elimination of the RS(e) group leads to overall addition to or substitution at the alkene by the nitrogen nucleophile (“N”) respectively (Scheme 1).  相似文献   

13.
A comparative study of molecular balances by NMR spectroscopy indicates that noncovalent functional‐group interactions with an arene dominate over those with an alkene, and that a π‐facial intramolecular hydrogen bond from a hydroxy group to an arene is favored by approximately 1.2 kJ mol?1. The strongest interaction observed in this study was with the cyano group. Analysis of the series of groups CH2CH3, CH?CH2, C?CH, and C?N shows a correlation between conformational free‐energy differences and the calculated charge on the Cα atom of these substituents, which is indicative of the electrostatic nature of their π interactions. Changes in the free‐energy differences of conformers show a linear dependence on the solvent hydrogen bond acceptor parameter β.  相似文献   

14.
Solid supported palladium(0) (SS-Pd) catalyzed highly chemoselective reduction of nitroarenes to the corresponding anilines was accomplished under a milder reaction condition. This catalyst showed high compatibility with various reducing agents (NaBH4, Et3SiH, and NH2NH2·H2O) and a large number of reducible functional groups such as sulfonamide, amides, carboxylic acid, ester, alcohol, halide, hetero cycle, nitrile, alkene, carbonyl, O-benzyl, and N-benzyl were tolerated. Most of the reactions were clean and high yielding. The SS-Pd catalyst could be recycled up to seven runs without significant loss of activity.  相似文献   

15.
In 4‐fluoroisoquinoline‐5‐sulfonyl chloride, C9H5ClFNO2S, (I), one of the two sulfonyl O atoms lies approximately on the isoquinoline plane as a result of minimizing the steric repulsion between the chlorosulfonyl group and the neighbouring F atom. In (S)‐(−)‐4‐fluoro‐N‐(1‐hydroxypropan‐2‐yl)isoquinoline‐5‐sulfonamide, C12H13FN2O3S, (II), there are two crystallographically independent molecules (Z′ = 2). The molecular conformations of these two molecules differ in that the amine group of one forms an intramolecular bifurcated hydrogen bond with the F and OH groups, whilst the other forms only a single intramolecular N—H...F hydrogen bond. The N—H...F hydrogen bonds correspond to weak coupling between the N(H) and 19F nuclei, observed in the 1H NMR solution‐state spectra. In (S)‐(−)‐4‐[(4‐fluoroisoquinolin‐5‐yl)sulfonyl]‐3‐methyl‐1,4‐diazepan‐1‐ium chloride, C15H19FN3O2S+·Cl, (III), the isoquinoline plane is slightly deformed, suggestive of a steric effect induced by the bulky substituent on the sulfonyl group.  相似文献   

16.
α‐Amino nitriles tethered to alkenes through a urea linkage undergo intramolecular C‐alkenylation on treatment with base by attack of the lithionitrile derivatives on the N′‐alkenyl group. A geometry‐retentive alkene shift affords stereospecifically the E or Z isomer of the 5‐alkenyl‐4‐iminohydantoin products from the corresponding starting E ‐ or Z N ′‐alkenyl urea, each of which may be formed from the same N ‐allyl precursor by stereodivergent alkene isomerization. The reaction, formally a nucleophilic substitution at an sp2 carbon atom, allows the direct regioselective incorporation of mono‐, di‐, tri‐, and tetrasubstituted olefins at the α‐carbon of amino acid derivatives. The initially formed 5‐alkenyl iminohydantoins may be hydrolyzed and oxidatively deprotected to yield hydantoins and unsaturated α‐quaternary amino acids.  相似文献   

17.
This work showcases a new catalytic cyclization reaction using a highly Lewis acidic borane with concomitant C−H or C−C bond formation. The activation of alkyne‐containing substrates with B(C6F5)3 enabled the first catalytic intramolecular cyclizations of carboxylic acid substrates using this Lewis acid. In addition, intramolecular cyclizations of esters enable C−C bond formation as catalytic B(C6F5)3 can be used to effect formal 1,5‐alkyl migrations from the ester functional groups to unsaturated carbon–carbon frameworks. This metal‐free method was used for the catalytic formation of complex dihydropyrones and isocoumarins in very good yields under relatively mild conditions with excellent atom efficiency.  相似文献   

18.
Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form “classical” Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically “frustrated Lewis pairs (FLPs)” is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter‐ or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C6F5)2 components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H+/H? pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal‐free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three‐component reactions, offering new strategies for synthetic chemistry.  相似文献   

19.
Three synthetic methods towards semi-planar triarylboranes with two aryl rings connected by a methylene bridge have been developed. The fine-tuning of their stereoelectronic properties and Lewis acidities was achieved by introducing fluorine, methyl, methoxy, n-butyl and phenyl groups either at their exocyclic or bridged aryl rings. X-ray diffraction analysis and quantum-chemical calculations provided quantitative information on the structural distortion experienced by the near planar hydro-boraanthracene skeleton during the association with Lewis bases such as NH3 and F. Though the methylene bridge between the ortho-positions of two aryl rings of triarylboranes decreased the Gibbs free energies of complexation with small Lewis bases by less than 5 kJ mol−1 relative to the classical Lewis acid BAr3, the steric shielding of the CH2 bridge is sufficient to avoid the formation of Lewis adducts with larger Lewis bases such as triarylphosphines. A newly synthesized spirocyclic amino-borane with a long intramolecular B−N bond that could be dissociated under thermal process, UV-irradiation, or acidic conditions might be a potential candidate in Lewis pairs catalysis.  相似文献   

20.
Neutral YIII dialkyl complexes supported by tridentate N?,N,N monoanionic methylthiazole– or benzothiazole–amidopyridinate ligands have been prepared and completely characterized. Studies on their stability in solution revealed progressive rearrangement of the coordination sphere in the benzothiazole‐containing system through an unprecedented metal‐to‐ligand alkyl migration and subsequent thiazole ring opening. Attempts to synthesize hydrido species from the dialkyl precursor led to the generation of a dimeric yttrium species stabilized by a trianionic N?,N,N?,S? ligand as the result of metal‐to‐ligand hydride migration with chemoselective thiazole ring opening and subsequent dimerization through intermolecular addition of the residual Y?H group to the imino fragment of a second equivalent of the ring‐opened intermediate. DFT calculations were used to elucidate the thermodynamics and kinetics of the process, in support of the experimental evidence. Finally, all isolated yttrium complexes, especially their cationic forms prepared by activation with the Lewis acid Ph3C+[B(C6F5)4]?, were found to be good candidate catalysts for intramolecular hydroamination/cyclization reactions. Their catalytic performance with a number of primary and secondary amino alkenes was assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号