首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the present work, an analytical multiresidue method has been developed for the analysis of 32 organochlorine, organophosphorus and organonitrogen pesticides at microg kg(-1) levels in virgin olive oil. The method consists of the extraction of the pesticides with acetonitrile saturated in n-hexane followed by a clean-up process based on gel permeation chromatography (GPC) with ethyl acetate-ciclohexane (1:1) as mobile phase to separate the low-molecular mass pesticides from the high-molecular mass fat constituents of the oil. The target compounds were determined in the final extract by gas chromatography (GC) using thermoionic specific (TSD) and electron-capture (ECD) detection. In the case of positive samples, the amounts found were confirmed by GC-MS/MS, being the results in good agreement. Recoveries and RSDs (n = 10) values were 91-124% and 1-8% (GC-ECD), 82-100% and 9-20% (GC-TSD), and 89-105% and 4-14% (GC-MS/MS), respectively. The three proposed methods were applied to samples collected directly in two olive mills located in the Jaén province (Spain). Specifically, 24 samples of virgin olive oil were collected. The most frequently pesticide residues found were the herbicides terbuthylazine and diuron and endosulfan sulfate, a degradation product of the insecticide endosulfan. The herbicide concentration was higher in those oil samples obtained from olives which were collected from the ground after they had fallen down than in those oil samples from olives harvested directly from the tree. The GC-MS/MS developed method was also applied to the analysis of an olive oil sample from a proficiency test spiked with organochlorine pesticides and all the values obtained were within the specified "satisfactory" range.  相似文献   

2.
A gas chromatographic (GC) method was developed and statistically validated for the simultaneous determination of residues of pyrethroid, endosulfan, and organophosphorus insecticides and some of their metabolites on olive tree leaves. Pesticide residues were extracted by static extraction with acetone-dichloromethane. After evaporation of the extract to dryness and redissolution in acetone, the organophosphorus insecticides were determined by GC with nitrogen-phosphorus detection. Another portion of the extract, after solvent change to acetonitrile, was cleaned up on an Alumina-N cartridge and analyzed for insecticides sensitive to electron-capture detection (ECD), i.e., pyrethroids and endosulfan and its metabolite. Recoveries of the organophosphorus insecticides ranged from 80.7 to 93.3% with relative standard deviations (RSDs) of < or = 7.2%; recoveries of the ECD-sensitive insecticides ranged from 71.6 to 89.5% with RSDs of < or = 11.6%. The method was used to analyze 26 samples of olive tree leaves from organic olive groves all over Greece, and the results confirmed the viability of the method for routine analysis. Residues of fenthion and fenthion sulfoxide were found in one and 3 samples, respectively, and their identities were confirmed by GC with mass spectrometry.  相似文献   

3.
The efficiency of headspace solid-phase microextraction (SPME) was evaluated for the qualitative and semi-quantitative analysis of virgin olive oil volatile compounds. The behaviour of four fibre coatings was compared for sensitivity, repeatability and linearity of response. A divinylbenzene-Carboxen-polydimethylsiloxane fibre coating was found to be the most suitable for the analysis of virgin olive oil volatiles. Sampling and chromatographic conditions were examined and the SPME method, coupled to GC with MS and flame ionization detection, was applied to virgin olive oil samples. More than 100 compounds were isolated and characterised. The presence of some of these compounds in virgin olive oil has not previously been reported. The main volatile compounds present in the oil samples were determined quantitatively.  相似文献   

4.
A multiresidue method has been developed and optimized for the quantitative analysis of 32 pesticides in olives. The extraction was based on homogenization with light petroleum using a high speed homogenizer. A gel permeation chromatography (GPC) clean-up process with ethyl acetate/cyclohexane (1:1) as mobile phase was applied to the extracts to separate the low-molecular mass pesticides from the high-molecular mass fat constituents of the oil. The target compounds were quantified in the final extract by gas chromatography (GC) using thermoionic specific detection (TSD) and electron-capture detection (ECD). In the case of positive samples, the amounts found were confirmed by GC-MS/MS. The obtained recovery (with mean values between 70 and 121, 71 and 114, and 82 and 134% for ECD, TSD and MS/MS systems, respectively) and RSD values (repeatability, n=10) below 16% in all cases confirm the usefulness of the proposed method for the analysis of this complex sample. Diuron, terbuthylazine and endosulfan sulfate were the most frequently detected residues in olive samples collected during the harvest 2004-2005. Finally, in order to know the proportion of pesticides that are transferred to the oil during olive oil production in olive mills, obtained results in some of the sampled olives applying the proposed method were compared to levels found in the corresponding olive oil, which was obtained by means of the Abencor method.  相似文献   

5.
In the present article, a headspace solid-phase microextraction method coupled to GC/MS was developed and applied for the simultaneous determination of mono- and sesquiterpenic hydrocarbons in virgin olive oils of different olive variety and geographical origin. Analysis of various oils resulted in the simultaneous detection of 15 monoterpenes and 30 sesquiterpenes. Some of these hydrocarbons were previously reported to be constituents of virgin olive oil terpenoid fraction, although we also detected some terpenic hydrocarbons that have not previously been documented as present in virgin olive oil. Significant differences were detected in the proportion of terpenic compounds in oils obtained from different olive varieties grown in different geographical areas. The monoterpene, and particularly the sesquiterpene composition of olive oil may be used to distinguish samples from different cultivar and geographical areas.  相似文献   

6.
The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils (“lampante,” “virgin,” and “extra virgin” olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert’s panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.  相似文献   

7.
A novel analytical approach has been developed and evaluated for the quantitative analysis of a selected group of widely used pesticides (dimethoate, simazine, atrazine, diuron, terbuthylazine, methyl-parathion, methyl-pirimiphos, endosulfan I, endosulfan II, endosulfan sulphate, cypermethrin and deltamethrin), which can be found at trace levels in olive oil and olives. The proposed methodology is based on matrix solid-phase dispersion (MSPD), (with a preliminary liquid-liquid extraction in olive oil samples) using aminopropyl as sorbent material with a clean-up performed in the elution step with Florisil, followed by mass spectrometric identification and quantitation of the selected pesticides using both gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode and liquid chromatography tandem mass spectrometry (LC-MS-MS) in positive ionization mode. The recoveries obtained (with mean values between 85 and 115% (obtained at different fortification levels) with RSD values below 10% in most cases, confirm the usefulness of the proposed methodology for the analyses of these kind of complex samples with a high fat content. Moreover, the obtained detection limits, which were below 5 microg kg(-1) by LC-MS analyses and ranged from 10 to 60 microg kg(-1) by GC-MS meet the requirements established by the olive oil pesticide regulatory programs. The method was satisfactorily applied to different olives and olive oil samples.  相似文献   

8.
A simple, extremely low-cost method using low-temperature lipid precipitation has been developed for the rapid analysis of virgin olive oil for organophosphorus insecticides and triazine herbicides commonly used in olive groves. The method gives good clean-up for GC analysis with nitrogen-phosphorus detection and recoveries between 77 and 104%, with RSD values of 7-16%. Matrix enhancement was observed for some pesticides and metabolites.  相似文献   

9.
A reliable, simple and relatively fast method for the simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil was developed, based on headspace solid-phase microextraction (HS-SPME). The investigation regarded eco-contaminants such as alkylated monoaromatic hydrocarbons from C1- to C4-benzenes and light polyaromatic hydrocarbons up to four aromatic rings. Sampling and chromatographic conditions were optimized by using standard solutions in deodorized olive oil and the analytical performances of the method were determined. The proposed method was then applied to real samples of virgin olive oil were the target hydrocarbons could be identified and quantified. Several of them had not been previously quantified in virgin olive oil. Moreover, by the analysis of olive oil samples an additional number of C4-benzenes could be tentatively identified.  相似文献   

10.
Free sterols were evaluated as factors for discriminating between genuine virgin olive oil and hazelnut-mixed virgin olive oil. Numeric analyses of the results amplified the differences between groups. The application of this method to virgin olive oil samples and their mixtures with 10% hazelnut oil distinguished between genuine and nongenuine virgin olive oil with statistical certainty. Triacylglycerol analysis was tested for the same purpose by using parameter deltaECN42, but although it possessed a discriminating capacity, it alone could not distinguish the aforementioned groups with sufficient certainty. Free delta7-sterols data were combined with deltaECN42 data into a single discriminating function to improve differentiation and bring more ruggedness, and for detection of low amounts (10%) of hazelnut oil in virgin olive oil. In fact, the values obtained by addition of delta7-sterol data and deltaECN42 data showed a higher discriminating capacity than single parameters. In a single operation the method produced all the oil fractions necessary for analysis of free sterols and triacylglycerols with ECN42. Solid-phase extraction was applied in substitution of traditional chromatography on a silica column.  相似文献   

11.
Control of adulteration of olive oil, together with authentication and contamination, is one of the main aspects in the quality control of olive oil. Adulteration with hazelnut oil is one of the most difficult to detect due to the similar composition of hazelnut and olive oils; both virgin olive oil and olive oil are subjected to that kind of adulteration. The main objective of this work was to develop an analytical method able to detect adulteration of virgin olive oils and olive oils with hazelnut oil by means of its analysis by a headspace autosampler directly coupled to a mass spectrometer used as detector (ChemSensor). As no chromatographic separation of the individual components of the samples exists, a global signal of the sample is obtained and employed for its characterization by means of chemometric techniques. Four different crude hazelnut oils from Turkey were employed for the development of the method. Multivariate regression techniques (partial least squares and principal components analysis) were applied to generate adequate regression models. Good values were obtained in both techniques for the parameters employed (standard errors of prediction (SEP) and prediction residual error sum of squares (PRESS)) to evaluate its goodness. With the proposed method, minimum adulteration levels of 7 and 15% can be detected in refined and virgin olive oils, respectively. Once validated, the method was applied to the detection of such adulteration in commercial olive oil and virgin olive oil samples.  相似文献   

12.
Adulteration of extra virgin olive oil with sunflower oil is a major issue for the olive oil industry. In this paper, the potential of total synchronous fluorescence (TSyF) spectra to differentiate virgin olive oil from sunflower oil and synchronous fluorescence (SyF) spectra combined with multivariate analysis to assess the adulteration of virgin olive oil are demonstrated. TSyF spectra were acquired by varying the excitation wavelength in the region 270–720 nm and the wavelength interval (Δλ) in the region from 20 to 120 nm. TSyF contour plots for sunflower, in contrast to virgin olive oil, show a fluorescence region in the excitation wavelength range 325–385 nm. Fifteen different virgin olive oil samples were adulterated with sunflower oil at varying levels (0.5–95%) resulting in one hundred and thirty six mixtures. The partial least-squares regression model was used for quantification of the adulteration using wavelength intervals of 20 and 80 nm. This technique is useful for detection of sunflower oil in virgin olive oil at levels down to 3.4% (w/v) in just two and a half minutes using an 80-nm wavelength interval.  相似文献   

13.
The sterol composition of extra virgin olive oil is very characteristic and, thus, has become a helpful tool to detect adulterations with other vegetable oils. Special attention has been addressed to the separate determination of the free and esterified sterol fractions, since both have different compositions and can thus provide more precise information about the actual origin of the olive oil. In the case of admixtures with small amounts of hazelnut oil, this approach can be extremely useful, because the similarity between the fatty acid compositions of both oils hampers the detection of the fraud. A hyphenated chromatographic method was developed for a sensitive and precise determination of esterified sterols in olive oils. The oil was subjected to silica solid-phase extraction (SPE) fractionation, cold saponification of the collected fraction and purification on silica TLC. The sterol band was then injected into an SPB-5 (30 m x 0.25 mm I.D., 0.25 microM film thickness) and the ratio [% campesterol x (% 7-stigmastenol)2]/(% 7-avenasterol) was calculated. The method was tested on extra virgin olive oil; good sterol recoveries and repeatability were obtained. The results were compared with another method. which has a different sample preparation sequence (silica column chromatography, hot saponification and silica TLC). Similar results were achieved with both methods; however, the SPE-cold saponification-TLC-capillary GC was faster, required less solvent and prevented sterol decomposition. The SPE-method was applied to an admixture with 10% of hazelnut oil and to a screening of 11 oils (husk oil, virgin and refined olive oils) from different Mediterranean countries.  相似文献   

14.
The Oxitester method, a novel, simple, and fast photometric method for the evaluation of the antioxidant capacity of olive oils, was validated and compared to the official oil stability index (Rancimat) method. The Oxitester method appeared to be a good alternative to the Rancimat method with adequate correlation for a wide range of virgin olive oil samples, including extrissima virgin olive oils (correlation coefficient 0.88), and extra virgin olive oils of increased acidity (free fatty acids >0.45%, correlation coefficient 0.89). Other quality factors (flavor, free fatty acids content, specific absorbance at 270 and 232 nm, peroxide value, and content of oleic, linoleic, and linolenic acids) were also measured and correlated to the antioxidant capacity values of the Oxitester and Rancimat methods. The Oxitester method, in contrast to the Rancimat method, was indicative of the flavor characteristics of the olive oils and the content of linolenic acid.  相似文献   

15.
The authentication of virgin olive oil samples requires usually the use of sophisticated and time consuming analytical techniques. There is a need for fast and simple analytical techniques for the objective of a quality control methodology. Virgin olive oils present characteristic NIR spectra. Chemometric treatment of NIR spectra was assessed for the quantification of fatty acids and triacylglycerols in virgin olive oil samples (n=125) and for their classification (PLS1-DA) into five very geographically closed registered designations of origin (RDOs) of French virgin olive oils ("Aix-en-Provence", "Haute-Provence", "Nice", "Nyons" and "Vallée des Baux"). The spectroscopic interpretation of regression vectors showed that each RDO was correlated to one or two specific components of virgin olive oils according to their cultivar compositions. The results were quite satisfactory, in spite of the similarity of cultivar compositions between two denominations of origin ("Aix-en-Provence" and "Vallée des Baux"). Chemometric treatments of NIR spectra allow us to obtain similar results than those obtained by time consuming analytical techniques such as GC and HPLC, and constitute a help fast and robust for authentication of those French virgin olive oils.  相似文献   

16.
Conventional methods for sterol fractions separation by TLC have some drawbacks such as low recovery and time consuming. A new solid-phase extraction (SPE) method was developed with stepwise elution by increasing the polarity of solvents mixture: n-hexane and diethyl ether. This method was applied to separate sterol fractions of hazelnut and virgin olive oils, and our results were compared with those of TLC method. The recovery of spiked authentic sample of 4-desmethylsterols in oil was higher with the SPE method (94%) compared with the TLC method (62%). The amount of 4,4'-dimethylsterols and 4-desmethylsterols separated with SPE in both hazelnut and virgin olive oil samples were at least 75% and 35%, respectively, higher than that of TLC. Generally, both methods obtained similar results for 4-monomethylsterols of the two oils. This new SPE method to separate phytosterol fractions was less time consuming, simpler and can be used instead of preparative TLC to detect adulteration of virgin olive oil with hazelnut oil.  相似文献   

17.
A multiresidue method for determining major pesticides and polycyclic aromatic hydrocarbons (PAHs) in olive oils in a single injection by use of gas chromatography/tandem mass spectrometry (GC-MS/MS) is proposed. Samples are previously extracted with an acetonitrile/n-hexane mixture and cleaned up by gel permeation chromatography. Electron ionization and chemical ionization allow pesticides and PAHs to be determined in a single analysis. The precision obtained was quite satisfactory (relative standard deviations ranged from 3 to 7.8%), and so were recoveries (84-110%). The linear relation was observed from 1 to 500 microg/kg for pesticides and 0.3 to 200 microg/kg for PAHs; also, the determination coefficient, R(2), was better than 0.995 in all instances. The proposed method was applied to the routine analysis of PAH and pesticide residues in virgin and refined olive oil and olive-pomace oil samples.  相似文献   

18.
13C nuclear magnetic resonance spectroscopy was used in a first attempt to differentiate olive oil samples by grades. High resolution 13C NMR Distortionless Enhancement by Polarization Transfer (DEPT) spectra of 137 olive oil samples from the four grades, extra virgin olive oils, olive oils, olive pomace oils and lampante olive oils, were measured. The data relative to the resonance intensities (variables) of the unsaturated carbons of oleate (C-9 and C-10) and linoleate (L-9, L-10 and L-12) chains attached at the 1,3- and 2-positions of triacylglycerols were analyzed by linear discriminant analysis. The 1,3- and 2- carbons of the glycerol moiety of triacylglycerols along with the C-2, C-16 and C-18 resonance intensities of saturated, oleate and linoleate chains were also analyzed by linear discriminant analysis. The three discriminanting functions, which were calculated by using a stepwise variable selection algorithm, classified in the true group by cross-validation procedure, respectively, 76.9, 70.0, 94.4 and 100% of the extra virgin, olive oil, olive pomace oil and lampante olive oil grades.  相似文献   

19.
In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.  相似文献   

20.
Solid-phase microextraction was used as a technique for headspace sampling of extra virgin olive oil and virgin olive oil samples with different off-flavours. A 100 microm coated polydimethylsiloxane fiber was used to extract volatile aldehydes, the sampling temperature was 45 degrees C and the fiber has been exposed to the headspace for 15 min. Nonanal and 2-decenal were present in all the olive oils with extraction off-flavours but were not in extra virgin olive oil sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号