共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
5.
6.
7.
María A. Aramendía Alberto Marinas José M Marinas Elena Sánchez Francisco J. Urbano Claude Guillou José M. Moreno Rojas Mustafa Moalem Luis Rallo 《Rapid communications in mass spectrometry : RCM》2010,24(10):1457-1466
We have determined δ13C, δ2H and δ18O isotopic abundances in Andalusian olive oils. In addition, the fatty acid composition and the distribution of isomers at positions 1,3 and 2 of glycerol were determined by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, respectively. Isotopic results obtained for four series of oil samples extracted from olives harvested in the 2004/05 and 2005/06 seasons are discussed in terms of olive variety, ripeness, geographical origin, fatty acid composition and growing altitude. A distinction was also established between olives grown in irrigated and in dry land by studying selected samples of the previous series and others from the 2005/06, 2006/07, 2007/08 and 2008/09 seasons. The results showed that olive ripeness does not influence the abundance of any of the three isotopes studied. On the other hand, the olive variety influences the abundance of the oxygen and hydrogen isotopes, and also, less markedly, that of carbon. No clear‐cut effect of height or latitude on isotope values is observed, probably because the olive variety also changes with height and latitude, thus masking such influences. The oil samples from dryland‐grown olives had increased δ13C values relative to irrigation‐grown olives. In addition, no definite relationship appears to exist between isotope distribution and fatty acid composition. Finally, oil samples from olives harvested in the 2005/06 season in Italy could be distinguished from those from Spain in terms of their isotopic values (δ2H mainly). Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
8.
9.
10.
N. N. Hanson C. M. Wurster EIMF C. D. Todd 《Rapid communications in mass spectrometry : RCM》2010,24(17):2491-2498
The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF‐IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain δ18O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life‐stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF‐IRMS although the δ18O values and analytical precisions (~0.2‰) of the two methods were comparable. In addition, SIMS δ18O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
Feng H. Lu 《Rapid communications in mass spectrometry : RCM》2009,23(19):3144-3150
A method for online simultaneous δ2H and δ18O analysis in water by high‐temperature conversion is presented. Water is injected by using a syringe into a high‐temperature carbon reactor and converted into H2 and CO, which are separated by gas chromatography (GC) and carried by helium to the isotope ratio mass spectrometer for hydrogen and oxygen isotope analysis. A series of experiments was conducted to evaluate several issues such as sample size, temperature and memory effects. The δ2H and δ18O values in multiple water standards changed consistently as the reactor temperature increased from 1150 to 1480°C. The δ18O in water can be measured at a lower temperature (e.g. 1150°C) although the precision was relatively poor at temperatures <1300°C. Memory effects exist for δ2H and δ18O between two waters, and can be reduced (to <1%) with proper measures. The injection of different amounts of water may affect the isotope ratio results. For example, in contrast to small injections (100 nL or less) from small syringes (e.g. 1.2 µL), large injections (1 µL or more) from larger syringes (e.g. 10 µL) with dilution produced asymmetric peaks and shifts of isotope ratios, e.g. 4‰ for δ2H and 0.4‰ for δ18O, probably resulting from isotope fractionation during dilution via the ConFlo interface. This method can be used to analyze nanoliter samples of water (e.g. 30 nL) with good precision of 0.5‰ for δ2H and 0.1‰ for δ18O. This is important for geosciences; for instance, fluid inclusions in ancient minerals may be analyzed for δ2H and δ18O to help understand the formation environments. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
13.
Fourel F Martineau F Lécuyer C Kupka HJ Lange L Ojeimi C Seed M 《Rapid communications in mass spectrometry : RCM》2011,25(19):2691-2696
We have used a high‐precision, easy, low‐cost and rapid method of oxygen isotope analysis applied to various O‐bearing matrices, organic and inorganic (sulfates, nitrates and phosphates), whose 18O/16O ratios had already been measured. It was first successfully applied to 18O analyses of natural and synthetic phosphate samples. The technique uses high‐temperature elemental analysis–pyrolysis (EA‐pyrolysis) interfaced in continuous‐flow mode to an isotope ratio mass spectrometry (IRMS) system. Using the same pyrolysis method we have been able to generate a single calibration curve for all those samples showing pyrolysis efficiencies independent of the type of matrix pyrolysed. We have also investigated this matrix‐dependent pyrolysis issue using a newly developed pyrolysis technique involving 'purge‐and‐trap' chromatography. As previously stated, silver phosphate being a very stable material, weakly hygroscopic and easily synthesized with predictable 18O/16O values, could be considered as a good candidate to become a reference material for the determination of 18O/16O ratios by EA‐pyrolysis‐IRMS. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
15.
Michael Collins Adam T. Cawley Aaron C. Heagney Luke Kissane James Robertson Helen Salouros 《Rapid communications in mass spectrometry : RCM》2009,23(13):2003-2010
Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (δ13C), nitrogen (δ15N) and hydrogen (δ2H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the δ13C, δ15N and δ2H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC‐IRMS) in high‐purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi‐synthetic, or fully synthetic origin. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd. 相似文献
16.
17.
18.
Jeffrey F. Kelly Eli S. Bridge Adam M. Fudickar Leonard I. Wassenaar 《Rapid communications in mass spectrometry : RCM》2009,23(15):2316-2320
Comparative equilibration has been proposed as a methodological approach for determining the hydrogen isotopic composition (δD) of non‐exchangeable hydrogen in complex organic materials, from feathers to blood and soils. This method depends on using homogenized standards that have been previously calibrated for their δD values of non‐exchangeable H, that are compositionally similar to unknown samples, and that span an appropriate isotopic range. Currently no certified organic reference materials with exchangeable H exist, and so isotope laboratories have been required to develop provisional internal calibration standards, such as the keratin standards currently used in animal migration studies. Unfortunately, the isotope ratios of some samples fall outside the range of keratin standards currently used for comparative equilibration. Here we tested a set of five homogenized keratin powders as well as feathers from Painted Buntings and Dark‐eyed Juncos to determine the effects of extrapolating comparative equilibration normalization equations outside the isotopic range of keratin standards. We found that (1) comparative equilibration gave precise results within the range of the calibration standards; (2) linear extrapolation of normalization equations produced accurate δD results to ~40‰ outside the range of the keratins standards used (?187 to ?108); and (3) for both homogenized keratin powders and heterogeneous unknown samples there was no difference in variance between samples within and outside the range of keratin standards. This suggested that comparative equilibration is a robust and practical method for determining the δD of complex organic matrices, although caution is required for samples that fall far outside the calibration range. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
G. Raju V. Ramesh R. Srinivas G. V. M. Sharma B. Shoban Babu 《Journal of mass spectrometry : JMS》2010,45(6):651-663
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献