首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A density functional theory study was used to investigate the quantum aspects of the solvent effects on the kinetic and mechanism of the ene reaction of 1‐phenyl‐1,3,4‐triazolin‐2,5‐dione and 2‐methyl‐2‐butene. Using the B3LYP/6–311++ G(d,p) level of the theory, reaction rates have been calculated in the various solvents and good agreement with the experimental data has been obtained. Natural bond orbital analysis has been applied to calculate the stabilization energy of N18? H19 bond during the reaction. Topological analysis of quantum theory of atom in molecule (QTAIM) studies for the electron charge density in the bond critical point (BCP) of N18? H19 bond of the transition states (TSs) in different solvents shows a linear correlation with the interaction energy. It is also seen form the QTAIM analysis that increase in the electron density in the BCP of N18? H19, raises the corresponding vibrational frequency. Average calculated ratio of 0.37 for kinetic energy density to local potential energy density at the BCPs as functions of N18? H19 bond length in different media confirmed covalent nature of this bond. Using the concepts of the global electrophilicity index, chemical hardness and electronic chemical potentials, some correlations with the rate constants and interaction energy have been established. Mechanism and kinetic studies on 1‐phenyl‐1,3,4‐triazolin‐2,5‐dione and 2‐methyl‐2‐butene ene reaction suggests that the reaction rate will boost with interaction energy enhancement. Interaction energy of the TS depends on the solvent nature and is directly related to electron density of the bonds involved in the reaction proceeding, global electrophilicity index and electronic chemical potential. However, the chemical hardness relationship is reversed. Finally, an interesting and direct correlation between the imaginary vibrational frequency of the N18? H19 critical bond and its electron density at the TS has been obtained. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The rate constants for the reaction of 2‐substituted cyclohex‐1‐eneacetic and 2‐substituted phenylacetic acids with diazodiphenylmethane were determined in various aprotic solvents at 30°C. To explain the kinetic results through solvent effects, the second‐order rate constants of the examined acids were correlated using the Kamlet–Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of multiple linear regression analysis, and the solvent effects on the reaction rates were analyzed in terms of initial and transition state contributions. The opposite signs of the electrophilic and the nucleophilic parameters are in agreement with the well‐known mechanism of the reaction of carboxylic acids with diazodiphenylmethane. The quantitative relationship between the molecular structure and the chemical reactivity is discussed, as well as the effect of the molecular geometry on the reactivity of the examined compounds. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 613–622, 2009  相似文献   

3.
The rate constants for the reaction of 2‐methyl‐cyclohex‐1‐enylcarboxylic, 2‐phenylcyclohex‐1‐enylcarboxylic, and 2‐methylbenzoic and 2‐phenylbenzoic acids with diazodiphenyl‐methane were determined in 14 various solvents at 30°C. To explain the kinetic results through solvent effects, the second‐order rate constants of the examined acids were correlated using the Kamlet–Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of multiple linear regression analysis, and the solvent effects on the reaction rates were analyzed in terms of initial and transition state contributions. The quantitative relationship between the molecular structure and the chemical reactivity has been discussed, as well as the effect of geometry on the reactivity of the examined molecules. The geometric data of all the examined compounds corresponding to the energy minima in solvent, simulated as dielectric continuum, obtained using semiempirical MNDO‐PM3 energy calculations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 664–671, 2007  相似文献   

4.
The reactivities of 2‐(4‐substituted phenyl)‐cyclohex‐1‐enecarboxylic acids, 2‐(4‐substituted phenyl)‐benzoic acids, and 2‐(4‐substituted phenyl)‐acrylic acids with diazodiphenylmethane in various solvents were investigated. To explain the kinetic results through solvent effects, the second‐order rate constants of the examined acids were correlated using the Kamlet–Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of multiple linear regression analysis, and the solvent effects on the reaction rates were analyzed in terms of initial and transition state contributions. The signs of the equation coefficients support the proposed reaction mechanism. The solvation models for all investigated carboxylic acids are suggested. The quantitative relationship between the molecular structure and the chemical reactivity is discussed, as well as the effect of geometry on the reactivity of the examined molecules. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 430–439, 2010  相似文献   

5.
The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11‐L, MP2, and spin‐component‐scaled MP2 (SCS‐MP2) methods were used, coupled with SMD and SM8 solvation models. A reduction in carbamate stability leads to an increased CO2 absorption capacity of the amine and a reduction of the energy required for solvent regeneration. Important factors for the reduction of the carbamate stability were an increase in steric hindrance around the nitrogen atom, charge on the N atom and intramolecular hydrogen bond strength. The present study indicates that secondary ethanolamines with sterically hindering groups near the N atom show significant potential as candidates for industrial CO2‐capture solvents.  相似文献   

6.
The interaction between 9-fluorenone, various indoles and solvents has been studied using steady-state fluorescence spectroscopy and quantum chemical calculations. It was determined that polar protic solvents such as methanol and ethanol significantly quenched the fluorescence of 9-fluorenone but various indoles reversed the solvent quenching. The effect of various solvents on the 9-fluorenone carbonyl vibration was investigated using infrared spectroscopy. Ab initio calculations using Gaussian03 were also carried out in order to determine the minimum energy conformations of these systems along with binding energies.  相似文献   

7.
Nitrosyl cation (NO+) generating reaction HONO + H+ → NO+ + H2O has been theoretically investigated by B3LYP and high‐electron‐correlation QCISD methods with 6‐31G (d,p) basis set. The solvent effects on the geometries, reaction path properties, energies, thermodynamic, and kinetic characters in four solvents (benzene, tetrahydrofuran, acetonitrile, and water) have been calculated using self‐consistent reaction field (SCRF) approach with the polarizable continuum model (PCM). The results show that the activation energy barriers and the relative energies of the products are decreased with increase of the polarities of the solvents, and the reaction is favored in polar solvents thermodynamically and kinetically. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
The kinetics of the dibutyltin dilaurate (DBTDL)‐catalyzed urethane formation reactions of cyclohexyl isocyanate (CHI) with model monofunctional fluorinated alcohols and fluoropolyether diol Z‐DOL H‐1000 of various molecular weights (100–1084 g mol?1) in different solvents were studied. IR spectroscopy and chemical titration methods were used for measuring the rate of the total NCO disappearance at 30–60 °C. The effects of the reagents and DBTDL catalyst concentrations, the solvent and hydroxyl‐containing compound nature, and the temperature on the reaction rate and mechanism were investigated. Depending on the initial reagent concentration and solvent, the reactions could be well described by zero‐order, first‐order, second‐order, or more complex equations. The reaction mechanism, including the formation of intermediate ternary or binary complexes of reagents with the tin catalyst, could vary with the concentration and solvent and even during the reaction. The results were treated with a rate expression analogous to those used for enzymatic reactions. Under the explored conditions, the rate of the uncatalyzed reaction of fluorinated alcohols with CHI was negligible. Moreover, there was no allophanate formation, nor were there other side reactions, catalysis by urethane in the absence of DBTDL, or a synergetic effect in the presence of the tin catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3771–3795, 2002  相似文献   

9.
In chromophore‐containing cyclobutane pyrimidine dimer (CPD) model systems, solvent effects on the splitting efficiency may depend on the length of the linker, the molecular conformation, and the oxidation potential of the donor. To further explore the relationship between chromophore structure and splitting efficiency, we prepared a series of substituted indole–T<>T model compounds 2 a – 2 g and measured their splitting quantum yields in various solvents. Two reverse solvent effects were observed: an increase in splitting efficiency in solvents of lower polarity for models 2 a – 2 d with an electron‐donating group (EDG), and vice versa for models 2 e – 2 g with an electron‐withdrawing group (EWG). According to the Hammett equation, the negative value of the slope of the Hammett plot indicates that the indole moiety during the T<>T‐splitting reaction loses negative charge, and the larger negative value implies that the repair reaction is more sensitive to substituent effects in low‐polarity solvents. The EDGs of the models 2 a – 2 d can delocalize the charge‐separated state, and low‐polarity solvents make it more stable, which leads to higher splitting efficiency in low‐polarity solvents. Conversely, the EWGs of models 2 e – 2 g favor destabilization of the charge‐separated state, and high‐polarity solvents decrease the destabilization and hence lead to more efficient splitting in high‐polarity solvents.  相似文献   

10.
The aza‐Morita‐Baylis–Hillman (aza‐MBH) reaction has been studied in a variety of solvents, a selection of imine substrates and with various combinations of PPh3 and para‐nitrophenol as the catalyst system. The measured kinetic data indicates that the effects of solvent and protic co‐catalyst are strongly interdependent. These results are most easily reconciled with a mechanistic model involving the reversible protonation of zwitterionic intermediates in the catalytic cycle, which is also supported by 31P NMR spectroscopy and quantum chemical studies.  相似文献   

11.
A new series of fluorescent 3-aminoalkylamidonapthalimides were synthesized starting form 1,8-naphthalic anhydride. The structure of these compounds was characterized by 1H NMR, 13C NMR, IR and Mass spectral analysis. The solvent effect on 1H and 13C NMR of these compounds was studied in CDCl3, CDCl3:DMSO-d6 (7:3, v/v) and DMSO-d6. NMR chemical shift of the ortho and para protons and meta carbons of naphthalene ring showed maximum variation on moving from CDCl3 to DMSO-d6. In CDCl3 solvent naphthalene ring may exist in slightly puckered form while in DMSO-d6 it attains maximum planar configuration. Fluorescent properties of the title compounds and their precursors were investigated in different solvents like chloroform, ethanol, acetonitrile, acetone, DMSO and water. 3-Aminoalkylamidonapthalimides exhibited improved fluorescence than their precursors. Cyclic amino derivatives yielded higher fluorescence quantum efficiency in protic solvents, ethanol and water. Acylic amino derivatives yielded high fluorescence quantum efficiency in chloroform solvent. The maximum fluorescence quantum yield up to 0.14 was found for butyl amine derivative in chloroform solvent. In general proton accepting nucleophilic solvents like acetone and DMSO quenched the fluorescence.  相似文献   

12.
Synthesis of five 4-aryl substituted 1,4-dihydropyridines was developed following condensation of multi component reaction strategy using yttrium triflate as a catalyst. The absorption and fluorescence properties of structurally related 4-aryl 1,4-dihydropyridines in different solvents of varied polarities was investigated. The absorption maxima of these compounds follow no order of solvent polarity and nature of substitution. The spectral characteristics are solvent and compound specific. Fluorophores with electron withdrawing group have larger fluorescence quantum yields and greater solvatochromism than the compounds with electron donating groups. Protic solvents yielded higher fluorescence quantum efficiency. The chemical shift of the proton attached to C-4 and the carbonyl stretching frequency of bis acetyl groups at 3 and 5-positions exhibited a linear relationship with Hammett's para substituent constants while no such relationship exists between the latter and electronic absorption maxima, fluorescence emission maxima, fluorescence quantum efficiency and Stokes shift.  相似文献   

13.
Alkali metal counter‐cations alter the electron density of phenolates in solution by electrostatic interactions. This change in electron density affects their reactivity toward formaldehyde, hydroxymethylphenols, and isocyanates during polymerization. The electronic perturbation of phenolic model compounds in the presence of alkali metal hydroxides was investigated with 13C and 1H nuclear magnetic resonance in polar solvents relative to non‐ionic controls, altering the chemical shifts of the model compounds, thus indicating changes in electron density using the chemical shift as a proxy. These shifts were attributed to Coulombic electrostatic interactions of the counter‐cation with the phenolate anion that correlated to hydrated ionic radius and solvent dielectric constants. The predicted relative reaction rates for formaldehyde addition based on electron density ranking from 13C nuclear magnetic resonance of the phenolic models was compared with the literature values. Predictions for condensation reactions of 2‐ and 4‐hydroxymethylphenol from chemical shifts were consistent with published results. The results permit predictions for the reaction of phenolic compounds for the formation of thermosetting polymeric materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The rate constants for the reaction of different cycloalkenylcarboxylic, cycloalkenylacetic acids, and phenylacetic acid with diazodiphenylmethane were determined in 12 aprotic solvents at 30°C. In order to explain the kinetic results through solvent effects, the second‐order rate constant of the examined acids was correlated using the Kamlet–Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of multiple linear regression analysis, and the solvent effects on the reaction rates were analyzed in terms of initial and transition state contributions. The opposite signs of the electrophilic and the nucleophilic parameters are in agreement with the well‐known mechanism of the reaction of carboxylic acids with diazodiphenylmethane. The quantitative relationship between the molecular structure and the chemical reactivity is also discussed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 361–367, 2005  相似文献   

15.
We have investigated the ion-pairing and solvent effect on the NMR and UV/vis spectra of 1,1'-di- n-octyl-4,4'-bipyridinium diiodide in various solvents. A strikingly different behavior is observed in the low polar solvent dichloromethane. A large deshielding of the meta bipyridinium core resonance occurs and charge transfer (CT) transitions are observed in the visible region due to the formation of ion-pairs. The CT bands show a marked blue-shift as the polarity of the solvent is increased. Experimental data have been compared with the results of DFT calculations of proton's chemical shifts and TD-DFT calculations of the vertical electronic transitions of model ion-pairs (using the smaller methyl viologen dication) in the gas phase and after the inclusion of the solvent reaction field by means of the PCM scheme. Different geometrical arrangements of the ion-pairs have been investigated, and the direct and indirect solvent effect has been elucidated. A good agreement is obtained which allows one to get insights concerning the CT transitions of this system and the geometry of the ion-pairs in solution of low-polar solvents.  相似文献   

16.
The kinetics of the reaction of benzoic, 2‐methylbenzoic, phenylacetic, cyclohex‐1‐enecarboxylic, 2‐methylcyclohex‐1‐enecarboxylic, and cyclohex‐1‐eneacetic acids with diazodiphenylmethane was studied at 30, 33, 37, 40, and 45°C in a set of 12 protic and aprotic solvents. The reactions were found to follow the second‐order kinetics. The activation energy as well as the activation parameters, such as the standard entropy, the standard enthalpy, and the standard Gibbs energy of the activation, was calculated from the second‐order rate constants. The solvent and structural effects on the activation energy and the standard Gibbs energy of activation, for each examined compound, were analyzed. The results of Kamlet–Taft multiple correlation analysis show that the specific solvent–solute interactions play a dominant role in the governing of the reaction. The signs of the equation coefficients support the proposed reaction mechanism.  相似文献   

17.
The density functional theory has been used to study the tautomeric equilibrium of 2‐diazo‐4,6‐dinitrophenol(DDNP) in the gas phase and in 14 solvents at the B3LYP/6‐31G* level. The solvent effects on the tautomeric equilibria were investigated by the self‐consistent reaction field theory (SCRF) based on conductor polarized continuum model (CPCM) in apolar and polar solvents and by the hybrid continuum‐discrete model in protic solvent, respectively. Solvent effects on the computed molecular properties, such as molecular geometries, dipole moments, ELUMO, EHOMO, total energies for DDNP tautomers and transition state, tautomerization energies and solvation energies have been found to be evident. The tautomeric equilibrium of DDNP is solvent‐dependent to a certain extent. The tautomer I (cyclic azoxy form) is preferred in the gas phase, while in nonpolar solvents tautomer I and II (quinold form) exist in comparable amounts, and in highly polar solvents, the tautomeric equilibrium is shifted in favor of the more polar tautomer II . © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The kinetics of Ni2+ deposition at the mercury electrode, from non-complexing electrolytes in mixed water methanol solvents has been investigated. The rate of this reaction, in the whole composition range, at large overpotentials is controlled by a limiting “chemical” process. The rate constants of the limiting process when plotted as a function of the solvent composition display a relationship similar to those observed for the large organic, bidendate ligands substitution reactions, believed to the controlled by the Ni(II)-solvent bond rupture. Hence, the limiting “chemical” process in Ni2+ discharge can be identified as the slow solvent dissociation step. These results confirm the mechanism of Ni2+ dischrage already proposed by Gierst and Dandoy on the basis of investigations performed in aqueous solutions.  相似文献   

19.
测试了反-1,2-双[2-(5-苯基 唑基)]乙烯(POEOP)类化合物在1,4-二氧六环中的荧光寿命及其在不同溶剂中的光二聚量子产率,计算了其荧光辐射速率常数和非辐射速率常数,研究了取代基效应及溶剂性质对该类化合物光二聚反应的影响。结果发现,溶剂的极性增加有利于光二聚反应,但重原子溶剂对光二聚反应不利,表明该类化合物经单重态历程进行光二聚.  相似文献   

20.
Fedorowicz  A.  Koll  A.  Mavri  J. 《Theoretical chemistry accounts》2003,109(4):220-228
 Molecular dynamics thermodynamic integration (MDTI) method and quantum chemical calculations at the density functional theory B3LYP 6-31+(d,p) level, which included the Tomasi model of the solvent reaction field, were applied to study the tautomeric equilibrium of Mannich base in methanol solution. The values obtained for the free-energy difference are in good agreement with experimental data. However, the results from quantum mechanical calculations were not as good as the results of MDTI simulations owing to inappropriate treatment of intermolecular hydrogen bonds between the solute molecule and the first shell of solvent molecules in the Tomasi model of the solvent reaction field. The radial distribution functions between solute atoms and solvent atoms confirmed the formation of hydrogen bonds between the solute molecule and surrounding methanol molecules and indicated that the zwitterionic form is associated more with an organized solvent structure at the level of the first solvation shell than is the molecular form. Received: 26 April 2002 / Accepted: 9 September 2002 / Published online: 31 March 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号