共查询到20条相似文献,搜索用时 15 毫秒
1.
Bereman MS Nyadong L Fernandez FM Muddiman DC 《Rapid communications in mass spectrometry : RCM》2006,20(22):3409-3411
We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) for high-resolution protein analysis. The DESI FT-ICR-MS source design is described in detail along with preliminary data obtained on peptides and proteins ranging from 1 to 5.7 kDa. 相似文献
2.
3.
Williams TI Saggese DA Toups KL Frahm JL An HJ Li B Lebrilla CB Muddiman DC 《Journal of mass spectrometry : JMS》2008,43(9):1215-1223
Posttranslational modifications such as glycosylation can play a fundamental role in signaling pathways that transform an ordinary cell into a malignant one. The development of a protocol to detect these changes in the preliminary stages of disease can lead to a sensitive and specific diagnostic for the early detection of malignancies such as ovarian cancer in which differential glycan patterns are linked to etiology and progression. Small variations in instrument parameters and sample preparation techniques are known to have significant influence on the outcome of an experiment. For an experiment to be effective and reproducible, these parameters must be optimized for the analyte(s) under study. We present a detailed examination of sample preparation and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS) analysis of O-linked glycans globally cleaved from mucin glycoproteins. Experiments with stable isotope-labeled biomolecules allowed for the establishment of appropriate acquisition times and excitation voltages for MALDI-FT-ICR-MS of oligosaccharides. Quadrupole ion guide optimization studies with mucin glycans identified conditions for the comprehensive analysis of the entire mass range of O-linked carbohydrates in this glycoprotein. Separately optimized experimental parameters were integrated in a method that allowed for the effective study of O-linked glycans. Copyright (c) 2008 John Wiley & Sons, Ltd. 相似文献
4.
5.
Perdivara I Sisu E Sisu I Dinca N Tomer KB Przybylski M Zamfir AD 《Rapid communications in mass spectrometry : RCM》2008,22(6):773-782
A novel strategy was developed to extend the application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) to the analysis of long-chain polysaccharides. High molecular weight polydisperse maltodextrins (poly-alpha(1-4) glucose) and dextrans (poly-alpha(1-6) glucose) were chosen as model compounds in the present study. Increased ionization efficiency of these mixtures in the positive ion mode was achieved upon modification of their reducing end with nitrogen-containing groups. The derivatization method is based on the formation of a new C--N bond between 1,6-hexamethylenediamine (HMD) and the reducing end of the polysaccharide, which exists in solution as an equilibrium between the hemiacetal and the open-ring aldehyde form. To achieve the chemical modification of the reducing end, two synthetic pathways were developed: (i) coupling of HMD by reductive amination and (ii) oxidation of the hemiacetal to lactone, followed by ring opening by HMD to yield the maltodextrin lactonamide of 1,6-hexanediamine (HMMD). Amino-functionalized polysaccharides were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) in the positive ion mode by direct flow injection. The hexamethylenediamine (HMD) and maltodextrin lactonamide of 1,6-hexanediamine (HMMD) moieties provide increased proton affinities which dramatically improve the detection of the long-chain polysaccharides by FTICR-MS. The present approach allowed for identification of single components in mixtures with prominent heterogeneity in the degree of polymerization (DP), without the need for chromatographic separation prior to MS. The high mass accuracy was essential for the unambiguous characterization of the species observed in the analyzed mixtures. Furthermore, molecular components containing up to 42 glucose residues were detected, representing the largest polysaccharide chains analyzed so far by ESI FTICR-MS. 相似文献
6.
Stefanie M?dler 《Journal of the American Society for Mass Spectrometry》2001,12(3):243-244
Editorial
Focus on Fourier transform ion cyclotron resonance mass spectrometry 相似文献7.
Koster S Duursma MC Boon JJ Heeren RM 《Journal of the American Society for Mass Spectrometry》2000,11(6):536-543
Electrospray ionization (ESI) was performed on a Fourier transform ion cyclotron resonance mass spectrometer for the endgroup
and monomer mass determination of three poly(oxyalkylene)s in the mass range of 400–8000 Da. A combined use of the multiple
charge states observed with ESI, leads to a threefold increase in accuracy of the endgroup and monomer determination. The
improvement is attributed to the increased number of datapoints used for the regression procedure, yielding more accurate
results. Endgroup masses are determined with a mass error better than 5 and 75 millimass units for the molecular weight range
of 400–4200 and 6200–8000 Da, respectively. A mass error of better than 1 millimass unit was observed for all monomer mass
determinations. With ESI, endgroup and monomer masses have been determined for poly(ethylene glycol) oligomers with a mass
higher than 8000 Da. This is almost two times higher than observed with matrix-assisted laser desorption/ ionization on the
same instrument. 相似文献
8.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated. 相似文献
9.
Julia L. Rummel Amy M. McKenna Alan G. Marshall John R. Eyler David H. Powell 《Rapid communications in mass spectrometry : RCM》2010,24(6):784-790
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
da Silva D Wasselin T Carré V Chaimbault P Bezdetnaya L Maunit B Muller JF 《Rapid communications in mass spectrometry : RCM》2011,25(13):1881-1892
Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage. 相似文献
11.
Because of poor aqueous solubility and lack of UV chromophores, the characterization of long-chain hydrocarbons and ceramides by conventional UV and mass spectrometric methods has not been successful. Therefore, a novel coaxial electrospray ionization method was developed for characterizing reaction products of phytosphingosine and hexacosanoic acid in toluene and tetrahydrofuran (THF), by high resolving power Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Simultaneous spraying of a solution of apolar analytes and polar reagents into the gas phase readily enabled protonation and/or sodiation of analyte with enhanced signal-to-noise (S/N). Sample introduction was by direct infusion such that the sprayers were arranged either along the instrument line-of-sight (for monospray and coaxial spray modes) or in a 45 degrees configuration for dual-spray mode. For dual-spray and coaxial spraying, p-toluenesulphonic acid was used as a reagent and sprayed simultaneously with the analyte dissolved in toluene or THF. Compounds were characterized by accurate mass measurement of the protonated and/or sodiated molecules. 相似文献
12.
石油是一种复杂体系,研究石油分子组成是分析化学领域的经典难题.近年来,傅里叶变换离子回旋共振质谱技术(Fourier transform ion cyclotron resonance mass spectrometry,FT-ICR MS)的发展,为从分子水平认识石油组成提供了机会,引起了石油化学界的高度关注,并被期待能在石油、石化领域的相关研究中实现重大突破.本文从质谱分辨率和电离技术方面介绍了石油样品的分析需求,总结了近几年基于FT-ICR MS技术对石油分子组成的研究进展,分析了其在应用中存在的关键技术问题及下一步研究方向,并对FT-ICR MS的发展前景给予展望. 相似文献
13.
Leinweber FC Schmid DG Lubda D Wiesmüller KH Jung G Tallarek U 《Rapid communications in mass spectrometry : RCM》2003,17(11):1180-1188
Capillary liquid chromatography based on particulate and monolithic stationary phases was used to screen complex peptide libraries by fast gradient elution coupled on-line to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS). A slightly modified commercial electrospray interface consisting of a fused-silica transfer capillary and low dead volume stainless steel union at which the electrospray voltage was grounded enabled the effluent of all the capillary columns to be directly sprayed into the mass spectrometer. Stable electrospray conditions were generated over a wide range of mobile phase compositions, alleviating the need for a tapered end of the spray capillary, pneumatic assistance or preheated nebulizer gas. Since the identification of complex samples containing numerous isobaric substances is facilitated by chromatographic separation prior to mass spectrometry, stationary phase materials have been employed which offer a fast, efficient elution and, due to the complexity of samples, a high loading capacity. Silica-based monolithic capillary columns combine these three characteristics in a unique manner due to a tailored adjustment of both macro- and mesopore sizes in the highly porous silica structure. As we demonstrate by a comparative study of the silica-based monolithic and packed capillaries for LC/MS analysis of complex peptide libraries, silica monoliths show superior performance over packed beds of small-diameter particles with respect to analysis time and separation efficiency. Libraries with more than 1000 different peptides could be screened in less than 20 min. 相似文献
14.
Cooper HJ Case MA McLendon GL Marshall AG 《Journal of the American Chemical Society》2003,125(18):5331-5339
The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure. 相似文献
15.
Youhnovski N Matecko I Samalikova M Grandori R 《European journal of mass spectrometry (Chichester, England)》2005,11(5):519-524
Protein charge-state distributions (CSDs) in electrospray-ionization mass spectrometry (ESI-MS) represent a sensitive tool to probe different conformational states. We describe here the effect of trifluoroethanol (TFE) on cytochrome c equilibrium unfolding at different pH by nano-ESI-MS. While even low concentrations of TFE destabilize the protein native structure at low pH, a TFE content of 2.5%-5% is found to favor cyt c folding at pH approximately 7. Furthermore, we perform comparison of CSDs obtained by time-of-flight (ToF) and Fourier-transform-ion- cyclotron-resonance (FT-ICR) mass analyzers. To this purpose, we analyze spectra of cyt c in the presence of different kind of denaturants. In particular, experiments with 1-propanol suggest that also by FT-ICR-MS, as previously observed on an ESI-ToF instrument, CSDs do not appear to be controlled by the solvent surface tension as predicted by the Rayleigh-charge model. Moreover, there is general good agreement in conformational effects revealed by the different instruments under several buffer conditions. Nevertheless, the ToF instrument appears to discriminate better between unfolded and partially unfolded forms. 相似文献
16.
Maria A. van Agthoven Marc-André Delsuc Geoffrey Bodenhausen Christian Rolando 《Analytical and bioanalytical chemistry》2013,405(1):51-61
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field. 相似文献
17.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used to investigate metal ion interactions of the 18 amino acid peptide fragment B18 (LGLLLRHLRHHSNLLANI), derived from the membrane-associated protein bindin. The peptide sequence B18 represents the minimal membrane-binding motif of bindin and resembles a putative fusion peptide. The histidine-rich peptide has been shown to self-associate into distinct supramolecular structures, depending on the presence of Zn(2+) and Cu(2+). We examined the binding of B18 to the metal ions Cu(2+), Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+). For Cu(2+), we compared the metal binding affinities of the wild-type B18 peptide with those of its mutants in which one, two or three histidine residues have been replaced by serines. Upon titration of B18 with Cu(2+) ions, we found sequential binding of two Cu(2+) ions with dissociation constants of approximately 34 and approximately 725 micro M. Mutants of B18, in which one histidine residue is replaced by serine, still exhibit sequential binding of two copper ions with affinities for the first Cu(2+) ion comparable to that of wild-type B18 peptide, but with a greatly reduced affinity for the second Cu(2+) ion in mutants H112S and H113S. For mutants in which two histidines are replaced by serines, the affinity for the first Cu(2+) ion is reduced approximately 3-10 times in comparison with B18. The mutant in which all three histidine residues are replaced by serines exhibits an approximately 14-fold lower binding for the first Cu(2+) ion compared with B18. For the other metal ions under investigation (Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+)), a modest affinity to B18 was detected binding to the peptide in a 1 : 1 stoichiometry. Our results show a high affinity of the wild-type fusogenic peptide B18 for Cu(2+) ions whereas the Zn(2+) affinity was found to be comparable to that of other di- and trivalent metal ions. 相似文献
18.
Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry 总被引:2,自引:0,他引:2
Takahashi H Kai K Shinbo Y Tanaka K Ohta D Oshima T Altaf-Ul-Amin M Kurokawa K Ogasawara N Kanaya S 《Analytical and bioanalytical chemistry》2008,391(8):2769-2782
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass
measurements owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics approaches have
been reported. A reliable annotation scheme is needed to deal with direct-infusion FT-ICR/MS metabolic profiling. Correlation
analyses can help us not only uncover relations between the ions but also annotate the ions originated from identical metabolites
(metabolite derivative ions). In the present study, we propose a procedure for metabolite annotation on direct-infusion FT-ICR/MS
by taking into consideration the classification of metabolite-derived ions using correlation analyses. Integrated analysis
based on information of isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and database
searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites and estimate cellular conditions based on
metabolite composition. A total of 220 detected ions were classified into 174 metabolite derivative groups and 72 ions were
assigned to candidate metabolites in the present work. Finally, metabolic profiling has been able to distinguish between the
growth stages with the aid of PCA. The constructed model using PLS regression for OD600 values as a function of metabolic profiles is very useful for identifying to what degree the ions contribute to the growth
stages. Ten phospholipids which largely influence the constructed model are highly abundant in the cells. Our analyses reveal
that global modification of those phospholipids occurs as E. coli enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic profiling, and database
searching is efficient for high-throughput metabolomics.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.
Guo X Duursma MC Kistemaker PG Nibbering NM Vekey K Drahos L Heeren RM 《Journal of mass spectrometry : JMS》2003,38(6):597-606
The internal energy of protonated leucine enkephalin has been manipulated in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with two newly designed pump-probe experiments. Blackbody infrared radiation was applied to pump an ion population into a well-defined internal energy distribution below the dissociation threshold. Following this pumping stage, the internal energy distribution was probed using on-resonance collisional activation to dissociate the ions. These pump-probe experiments were carried out in two different ways: (a) using on-resonance collisional activation with variable kinetic energies to dissociate the ions at a constant initial ion temperature (determining the precursor ion survival percentage as a function of kinetic energy) and (b) using on-resonance collisional activation with a constant kinetic energy to dissociate the ions at variable initial ion temperatures (to investigate the ion survival yield-initial ion temperature dependence). Using this approach, a detailed study of the effects of the initial ion temperature, the probing kinetic energy and the internal energy loss rate on the effective conversion efficiency of (laboratory-frame) kinetic energy to internal energy was conducted. This conversion efficiency was found to be dependent on the initial ion temperature. Depending on the experimental conditions the conversion efficiency (for collisions with argon) was estimated to be about 4.0 +/- 1.7%, which agrees with that obtained from a theoretical modeling. Finally, the reconstructed curves of the ion survival yield versus the mode of the (final) total internal energy distribution of the activated ion population (after pump and probe events) at different pump-probe conditions reveal the internal energy content of the activated ions. 相似文献
20.
Yan J Liu Z Yan C Xing J Liu S 《Rapid communications in mass spectrometry : RCM》2006,20(8):1335-1344
The fragmentations of four strychnos alkaloids have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the positive ion mode. Experiments using multi-stage tandem mass spectrometry (ESI-FT-ICR-MSn) allowed us to obtain precise elemental compositions of product ions at high mass resolution. The experimental data demonstrated that the nitrogen bridge and the coordinated oxygen atom on the nitrogen bridge in the alkaloid compounds were the active sites in the MS2 fragmentations. The loss of CH3 or the OCH3 group in those alkaloids, which have an OCH3 substituent, was the dominant fragmentation mode in the MS3 fragmentations. Logical fragmentation schemes for strychnos alkaloids have been proposed and these should be useful for the identification of these compounds. 相似文献