首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The new translation method for Slater-type orbitals (STOs) previously tested in the case of the overlap integral is extended to the calculation of two-center two-electron molecular integrals. The method is based on the exact translation of the regular solid harmonic part of the orbital followed by the series expansion of the residual spherical part in powers of the radial variable. Fair uniform convergence and stability under wide changes in molecular parameters are obtained for all studied two-center hybrid, Coulomb, and exchange repulsion integrals. Ten-digit accuracy in the final numerical results is achieved through multiple precision arithmetic calculation of common angular coefficients and Gaussian numerical integration of some of the analytical formulas resulting for the radial integrals. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 91–100, 2000  相似文献   

3.
A new scheme for deriving localized basis orbitals (LBOs) and for obtaining integral transformations from the basis orbitals (BOs) to the LBOs has been introduced. The scheme was tested at the ab initio Hartree-Fock level using the STO-3G basis set. It has been revealed that it provides results that are close to the conventional ab initio approximations for various physical-chemical properties. At the same time, both the number of differential overlaps and the number of electron repulsion integrals (ERIs) grow with the system size notably slower than those calculated for the usual BOs. The power exponent for ERI/LBO is typically smaller by 0.3-0.6 than that for ERI/BO. The exponent reaches the value of 1.69 even for triglycine (24 atoms only), which represents a relatively small molecular model. Thus, the localization of the BOs (using LBOs) may result in additional improvements in efficiency even for electronically delocalized systems. It was shown that ERI/LBO is particularly efficient for systems with complex spatial structures (including conjugated species). The obtained results indicate that the proposed scheme could be included in computational methods targeted at calculating large molecular systems (which achieve linear scaling for more distant interactions). Neglecting ERI/LBO does not depend on the delocalization of the localized MO using ERI/LBO. The orthogonality and locality of the LBOs should make them useful in methods based on dividing the system into orthogonal subsystems.  相似文献   

4.
Using expansion formulas for the charge‐density over Slater‐type orbitals (STOs) obtained by the one of authors [I. I. Guseinov, J Mol Struct (Theochem) 1997, 417, 117] the multicenter molecular integrals with an arbitrary multielectron operator are expressed in terms of the overlap integrals with the same screening parameters of STOs and the basic multielectron two‐center Coulomb or hybrid integrals with the same operator. In the special case of two‐electron electron‐repulsion operator appearing in the Hartree–Fock–Roothaan (HFR) equations for molecules the new auxiliary functions are introduced by means of which basic two‐center Coulomb and hybrid integrals are expressed. Using recurrence relations for auxiliary functions the multicenter electron‐repulsion integrals are calculated for extremely large quantum numbers. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 117–125, 2001  相似文献   

5.
The shift operator technique is used for deriving, in a unified manner, the master formulas for the four‐center repulsion integrals involving Gaussian (GTO), Slater (STO), and Bessel (BTO) basis functions. Moreover, for the two classes of exponential‐type functions (ETO), i.e., STO and BTO, we give the expressions corresponding to both the Gauss and Fourier transforms. From the comparison of the master formulas of GTO and ETO, we conclude that ETO can perform more efficiently than GTO, and we remark the points where the effort must be focused to carry out this possibility. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 16–28, 2001  相似文献   

6.
Using addition theorems for interaction potentials and Slater type orbitals (STOs) obtained by the author, and the Cartesian expressions through the binomial coefficients for complex and real regular solid spherical harmonics (RSSH) and their derivatives presented in this study, the series expansion formulas for multicenter multielectron integrals of arbitrary Coulomb and Yukawa like central and noncentral interaction potentials and their first and second derivatives in Cartesian coordinates were established. These relations are useful for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids by Hartree–Fock–Roothaan and correlated theories. The formulas obtained are valid for arbitrary principal quantum numbers, screening constants and locations of STOs.  相似文献   

7.
8.
A new program for computing all the integrals appearing in molecular calculations with Slater‐type orbitals (STO) is reported. This program follows the same philosophy as the reference pogram previously reported but introduces two main changes: Local symmetry is profited to compute all the two‐electron integrals from a minimal set of seed integrals, and a new algorithm recently developed is used for computing the seed integrals. The new code reduces between one and two orders of magnitude the computational cost in most polyatomic systems. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 148–153, 2001  相似文献   

9.
We present an efficient implementation of the Obara–Saika algorithm for the computation of electron repulsion integrals that utilizes vector intrinsics to calculate several primitive integrals concurrently in a SIMD vector. Initial benchmarks display a 2–4 times speedup with AVX instructions over comparable scalar code, depending on the basis set. Speedup over scalar code is found to be sensitive to the level of contraction of the basis set, and is best for quartets when lD = 0 or , which makes such a vectorization scheme particularly suitable for density fitting. The basic Obara–Saika algorithm, how it is vectorized, and the performance bottlenecks are analyzed and discussed. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The multicenter charge‐density expansion coefficients [I. I. Guseinov, J Mol Struct (Theochem) 417 , 117 (1997)] appearing in the molecular integrals with an arbitrary multielectron operator were calculated for extremely large quantum numbers of Slater‐type orbitals (STOs). As an example, using computer programs written for these coefficients, with the help of single‐center expansion method, some of two‐electron two‐center Coulomb and four‐center exchange electron repulsion integrals of Hartree–Fock–Roothaan (HFR) equations for molecules were also calculated. Accuracy of the results is quite high for the quantum numbers, screening constants, and location of STOs. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 146–152, 2000  相似文献   

11.
The expansion formula has been presented for Slater‐type orbitals with noninteger principal quantum numbers (noninteger n‐STOs), which involves conventional STOs (integer n‐STOs) with the same center. By the use of this expansion formula, arbitrary multielectron multicenter molecular integrals over noninteger n‐STOs are expressed in terms of counterpart integrals over integer n‐STOs with a combined infinite series formula. The convergence of the method is tested for two‐center overlap, nuclear attraction, and two‐electron one‐center integrals, due to the scarcity of the literature, and fair uniform convergence and great numerical stability under wide changes in molecular parameters is achieved. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

12.
A self-consistent formalism is proposed for the two-center electron repulsion integrals in the NDDO approximation, based on their expansion in terms of multipole-multipole interactions and free from adjustable parameters.  相似文献   

13.
The computation of electron repulsion integrals (ERIs) is the most time‐consuming process in the density functional calculation using Gaussian basis set. Many temporal ERIs are calculated, and most are stored on slower storage, such as cache or memory, because of the shortage of registers, which are the fastest storage in a central processing unit (CPU). Moreover, the heavy register usage makes it difficult to launch many concurrent threads on a graphics processing unit (GPU) to hide latency. Hence, we propose to optimize the calculation order of one‐center ERIs to minimize the number of registers used, and to calculate each ERI with three or six co‐operating threads. The performance of this method is measured on a recent CPU and a GPU. The proposed approach is found to be efficient for high angular basis functions with a GPU. When combined with a recent GPU, it accelerates the computation almost 4‐fold. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The performances of the algorithms employed in a previously reported program for the calculation of integrals with Slater-type orbitals are examined. The integrals are classified in types and the efficiency (in terms of the ratio accuracy/cost) of the algorithm selected for each type is analyzed. These algorithms yield all the one- and two-center integrals (both one- and two-electron) with an accuracy of at least 12 decimal places and an average computational time of very few microseconds per integral. The algorithms for three- and four-center electron repulsion integrals, based on the discrete Gauss transform, have a computational cost that depends on the local symmetry of the molecule and the accuracy of the integrals, standard efficiency being in the range of eight decimal places in hundreds of microseconds.  相似文献   

15.
Numerical methods for computing variationally optimized molecular orbitals within the Hartree–Fock approximation are augmented to include correlation functionals of the density in the energy and the numerical methods for carrying this out are described. The approach is applied explicitly to the Colle–Salvetti correlation energy functional. It is found that the gradient terms in the Colle–Salvetti functional present numerical problems associated with the low-density behavior, but also that they make a relatively small contribution to the correlation energy. In the three cases considered, HF, H2O and N2, it is found that the Colle–Salvetti correction considerably underestimates the correlation energies obtained in coupled-cluster theory.  相似文献   

16.
Extant analytic methods for evaluating two‐center electron repulsion integrals in a Slater‐type orbital (STO) basis using ellipsoidal coordinates and the Neumann expansion of 1/r12 have problems of numerical stability that are analyzed in detail using computer‐assisted algebraic techniques. Some of these problems can be eliminated by use of procedures known in this field 40 years ago but seemingly forgotten now. Others can be removed by use of a formulation suitable for small values of the STO screening parameter. A recent attempt at such a formulation is corrected and extended in a way permitting its practical use. The main functions encountered in the integrations over the ellipsoidal coordinate of the range 1 … ∞ are Bessel functions or generalizations thereof, as pointed out here for the first time. This fact is used to motivate the derivation of recurrence relations additional to those previously known. Novel techniques were devised for using these recurrence relations, thereby providing new ways of calculating the quantities that enter the ellipsoidal expansion. The convergence rate of this expansion and the numerical characteristics of several computational strategies are reported in enough detail to identify the ranges where various schemes can be used. This information shows that recent discussions of the “convergence characteristics of [the] ellipsoidal coordinate expansion” are in fact not that, but are instead discussions of an inability to make accurate calculations of the individual terms of the expansion. It is also seen that the parameter range suitable for use of Kotani's well‐known recursive scheme is more limited than seems generally believed. The procedures discussed in this work are capable of yielding accurate two‐center electron repulsion integrals by the ellipsoidal expansion method for all reasonable STO screening parameters, and have been implemented in illustrative public‐domain computer programs. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
A simplified analysis is presented for the evaluation of the three‐electron one‐center integrals of the form ∫rrrrrred r 1d r 2d r 3, for the cases i, j, k, ≥−2, l=−2, m≥−1, n≥−1. These integrals arise in the calculation of lower bounds for energy levels and certain relativistic corrections to the energy when Hylleraas‐type basis sets are employed. Convergence accelerator techniques are employed to obtain a reasonable number of digits of precision, without excessive CPU requirements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 93–99, 1999  相似文献   

18.
Summary We show that by a suitable change of variables, the derivatives of molecular integrals over Gaussian-type functions required for analytic energy derivatives can be evaluated with significantly less computational effort than current formulations. The reduction in effort increases with the order of differentiation.Dedicated to Prof. Klaus Ruedenberg  相似文献   

19.
A series of accompanying coordinate expansion (ACE) formulas for calculating the electron repulsion integral (ERI) over both generally and segmentally contracted solid harmonic (SH) Gaussian-type orbitals (GTOs) can be rederived by the use of the modified operator (called solid harmonic gradient here) of the spherical tensor gradient of Bayman and the reducing solid harmonic gradient defined in this article. The final general formulas contain the reducing mixed solid harmonics defined in a previous article [Ishida, K. J Chem Phys 1999, 111, 4913] and the reducing triply mixed solid harmonics defined previously [Ishida, K. J Chem Phys 2000, 113, 7818]. Each general formula in the series is named ACEb1k1, ACEb2k3, or ACEb3k3. New general algorithm can be obtained inductively from the general formula named ACEb2k3, in addition to the previously developed ACEb1k1 and ACEb3k3. For calculating ERI practically, we select one of these ACE algorithms, as it gives the minimum floating-point operation (FLOP) count. Theoretical assessment by the use of the FLOP count is performed for the (LL/LL) class of ERIs over both generally and segmentally contracted SH-GTOs (L = 1-3). It is found that the present ACE is theoretically the fastest among all rigorous methods in the literature.  相似文献   

20.
An efficient way of calculation is presented for matrix elements between two plane waves interacting with a molecular Coulombic field. In concurrence with the absolute value of the momentum transfer vector, K = k1 ? k 2 , the most effective method of calculation is selected. The case of K = 0 requires special treatment. For 0 < |K| ≤ 0.3, it is profitable to evaluate the integrals by means of the multipole expansion, and for |K| > 0.3 the density fitting can be applied. For the large |K| the electronic part of the integral is much smaller than the nuclear part and the integral may be approximated by the nuclear contribution only. Some examples for testing the accuracy and time saved are presented. The primary purpose of this paper is to accelerate electron scattering calculations, but it also may be profitable for the electronic structure theory in attempts to use mixed Gaussian and plane‐wave basis sets. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号