首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

2.
The new compound Cu3(TeO3)2Br2 crystallizes in the monoclinic spacegroup C2/m. The unit cell parameters are a=9.3186(18)Å, b=6.2781(9)Å, c=8.1999(16)Å, β=107.39(2)°, Z=2. The structure is solved from single crystal data, R1=0.021. The new compound shows a layered structure where only weak van der Waals interactions connect the layers. There are two crystallographically different Cu(II) atoms; one having a square planar [CuO4] coordination and one showing an unusual [CuO4Br] trigonal bi-pyramidal coordination, the Br-ion is located in the equatorial plane. The Te(IV) atom has a tetrahedral [TeO3E] coordination where E is the 5s2 lone-pair. Within the layers the Cu-polyhedra are connected by corner- and edge sharing to form chains. The chains are separated by the Te atoms. The magnetic properties are dominated by long range magnetic ordering at . Evidence for a coexistence of ferromagnetic and antiferromagnetic interactions exists.  相似文献   

3.
4.
《Solid State Sciences》2004,6(6):519-522
The new compound Co6(TeO3)2(TeO6)Cl2 has been isolated during an investigation of the system CoO:CoCl2:TeO2. The new compound is deep purple in color and crystallizes in the tetragonal system, space group P42/mbc, a=8.3871(7) Å, c=18.5634(19) Å, Z=4. The Co(II) ions have octahedral [Co1O6] and tetrahedral [Co2O3Cl] coordinations. Tellurium is present both as Te(IV) with a tetrahedral [Te1O3E] coordination, where E is the 5s2 lone-pair and as Te(VI) with an octahedral [Te2O6] coordination. The structure is made up of intersecting layers of tetrahedra forming channels comprising octahedra chains that run along the c-axis. The new compound is the first cobalt tellurium oxochloride described.  相似文献   

5.
We have determined the crystal structure of the quasi one-dimensional cuprate Ca0.83CuO2, known as Ca4Cu5O10, etc., by a superspace group approach. The compound consists of two interpenetrating subsystems of CuO2 chains and Ca atoms. Structural parameters were refined with a superspace group of F2/m(1+α 0 γ)0s using powder X-ray and neutron diffraction data. Lattice parameters were refined to be a1=2.8043(2) Å, b=6.3179(2) Å, c1=10.5744(5) Å, and β1=90.10(1)° for the [CuO2] subsystem and a2=3.3652(2) Å, b=6.3179(2) Å, c2=10.5893(5) Å, and β2=93.04(1)° for the [Ca] subsystem. Remarkable displacive modulation of the O and Ca atom sites is observed parallel to the b-axis and the c-axis, respectively. On the other hand, the Cu atom sites deviate mainly in the a direction to yield a periodic fluctuation between the nearest Cu-Cu distances. The Ca atoms suitably sit in the center of the modulated O6 octahedra.  相似文献   

6.
CuSbTeO3Cl2 has been isolated during an investigation of the system Cu2O:TeCl4:Sb2O3:TeO2. The new compound is light yellow and crystallises in the monoclinic system, space group C2/m, a=20.333(5) Å, b=4.0667(9) Å, c=10.778(2) Å, Z=6. The structure is layered and is built up from corner and edge sharing [(Sb,Te)O4E] trigonal bipyramids that have the lone pair (E) directed towards one of the equatorial positions, those groups build up [(Sb,Te)2O3E2+]n layers. The copper and the chlorine atoms are located in between those layers. There are two different Cu positions. The [Cu1Cl4] group is a slightly distorted tetrahedron and these tetrahedra make up chains by corner sharing. The electron density for the half occupied Cu2 atom is spread out in the structure like a worm that run along the b-axis in the space in between two chains of [Cu1Cl4] tetrahedrons. Analysis of the diamagnetic response in magnetic susceptibility measurements is in perfect agreement with a Cu+ valence. Conductivity measurements in the temperature range 355–590 K gives an activation energy of 0.55 eV. The delocalised Cu2 position in the structure suggests that the compound is a Cu+ ionic conductor along the b-axis.  相似文献   

7.
The new compound Co3Te2O2(PO4)2(OH)4 was synthesized using hydrothermal techniques. It crystallizes in the monoclinic space group C2/m with the unit cell a=19.4317(10) Å, b=6.0249(3) Å, c=4.7788(2) Å, β=103.139(5)°. The crystal structure is an open framework having chains of edge sharing [Co(1)O6] octahedra. Other building blocks are [TeO3(OH)2], [PO4] and [Co(2)O2(OH)4] connected mainly via corner sharing. The –OH groups protrude into channels in the structure. The magnetic susceptibility measured from 2 to 300 K shows two broad anomalies at around 21 K and 4 K, respectively. The peak at ∼20 K is ascribed to a two-dimensional antiferromagnetic ordering of linear [Co(1)O6] chains coupled by interchain interaction via [PO4] groups in the Co(1) sheets. The second transition at 4 K is ascribed to a second antiferromagnetic ordering of the moments of the Co(2) entities via super–super exchange involving [PO4] and [TeO3(OH)2] groups. This assignment is strongly supported by low-temperature heat capacity measurements indicating an entropy removal within the high-temperature transition of about twice the magnitude of the low-temperature transition.  相似文献   

8.
Two new barium zinc selenite and tellurite, namely, BaZn(SeO3)2 and BaZn(TeO3)Cl2, have been synthesized by the solid state reaction. The structure of BaZn(SeO3)2 features double chains of [Zn(SeO3)2]2− anions composed of four- and eight-member rings which are alternatively along a-axis. The double chains of [Zn2(TeO3)2Cl3]3− anions in BaZn(TeO3)Cl2 are formed by Zn3Te3 rings in which each tellurite group connects with three ZnO3Cl tetrahedra. BaZn(SeO3)2 and BaZn(TeO3)Cl2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements.  相似文献   

9.
Ag2Nb[P2S6][S2] (1) was obtained from the direct solid state reaction of Ag, Nb, P2S5 and S at 500 °C. KAg2[PS4] (2) was prepared from the reaction of K2S3, Ag, Nd, P2S5 and extra S powder at 700 °C. Compound 1 crystallizes in the orthorhombic space group Pnma with a=12.2188(11), b=26.3725(16), c=6.7517(4) Å, V=2175.7(3) Å3, Z=8. Compound 2 crystallizes in the non-centrosymmetric tetragonal space group with lattice parameters a=6.6471(7), c=8.1693(11) Å, V=360.95(7) Å3, Z=2. The structure of Ag2Nb[P2S6][S2] (1) consists of [Nb2S12], [P2S6] and new found puckered [Ag2S4] chains which are along [001] direction. The Nb atoms are located at the center of distorted bicapped trigonal prisms. Two prisms share square face of two [S22−] to form one [Nb2S12] unit, in which Nb-Nb bond is formed. The [Nb2S12] units share all S2− corners with ethane-like [P2S6] units to form 14-membered rings. The novel puckered [Ag2S4] chains are composed of distorted [AgS4] tetrahedra and [AgS3] triangles that share corners with each other. These chains are connected with [P2S6] units and [Nb2S12] units to form three-dimensional frame work. The structural skeleton of 2 is built up from [AgS4] and [PS4] tetrahedra linked by corner-sharing. The three-dimensional anionic framework contains orthogonal, intersecting tunnels directed along [100] and [010]. This compound possesses a compressed chalcopyrite-like structure. The structure is compressed along [001] and results from eight coordination sphere for K+. Both compounds are characterized with UV/vis diffuse reflectance spectroscopy and compound 1 with IR and Raman spectra.  相似文献   

10.
Slow crystallization of (PyrH)2[Nb6Cl18] from hot ethanol solution affords triclinic (PyrH)2[Nb6Cl18]·EtOH. Treatment of [Nb6Cl14(H2O)4]·4H2O with pyridine in a methanol solution gives the second title compound, the cubic modification of (PyrH)2[Nb6Cl18]. Both structures were determined by single crystal X-ray diffraction, (PyrH)2[Nb6Cl18]·EtOH: P1¯, a=9.3475(3), b=9.3957(3), c=10.8600(3) Å, α=82.582(1)°, β=78.608(1)°, and γ=78.085(1)°, Z=1, R1(F)/wR2(F2)=0.0254/0.0573, cub.-(PyrH)2[Nb6Cl18]: Fd3¯m, a=19.935(2) Å, Z=8, R1(F)/wR2(F2)=0.0557/0.1796. The cluster compounds contain isolated, molecular [Nb6Cli12Cla6]2− cluster anions with an octahedron of metal atoms edge bridged by chlorido ligands with additional ones on all the six exo positions. These cluster anions are separated by the pyridinium cations and ethanol solvent molecules, respectively. For the cubic modification of (PyrH)2[Nb6Cl18], a structural comparison is given to the known rhombohedral modification using the group-subgroup relations as expressed by a Bärnighausen tree.  相似文献   

11.
The preparation by hydrothermal reaction and the crystal structure of the iron(III) carboxyethylphosphonate of formula [NH4][Fe2(OH){O3P(CH2)2CO2}2] is reported. The green-yellow compound crystallizes in the monoclinic system, space group Pc(n.7), with the following unit-cell parameters: a=7.193(3) Å, b=9.776(3) Å, c=10.17(4) Å and β=94.3(2)°. It shows a typical layered hybrid organic-inorganic structure featuring an alternation of organic and inorganic layers along the a-axis of the unit cell. The bifunctional ligand [O3P(CH2)2CO2]3− is deprotonated and acts as a linker between adjacent inorganic layers, to form pillars along the a-axis. The inorganic layers are made up of dinuclear Fe(III) units, formed by coordination of the metal ions with the oxygen atoms originating from the [O3P−]2− end of the carboxyethylphosphonate molecules, the oxygen atoms of the [−CO2] end group of a ligand belonging to the adjacent layer and the oxygen atom of the bridged OH group. Each Fe(III) ion is six-coordinated in a very distorted octahedral environment. Within the dimer the Fe-Fe separation is found to be 3.5 Å, and the angle inside the [Fe(1)-O(11)-Fe(2)] dimers is ∼124°. The resulting 3D framework contains micropores delimited by four adjacent dimers in the (bc) planes of the unit cell. These holes develop along the a-direction as tunnel-like pores and [NH4]+ cations are located there. The presence of the μ-hydroxo-bridged [Fe(1)-O(11)-Fe(2)] dimers in the lattice is also responsible for the magnetic behavior of the compound at low temperatures. The compound contains Fe3+ ions in the high-spin state and the two Fe(III) ions are antiferromagnetic coupled. The J/k value of −16.3 K is similar to those found for other μ-hydroxo-bridged Fe(III) dimeric systems having the same geometry.  相似文献   

12.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

13.
The synthesis, X-ray structure, magnetic and transport properties of the compound Ni(dmf)6[Ni(dsit)2]2 (dmf=dimethylformamide, dsit=1,3-dithiole-2-thione-4,5-diselenolate) are described. This compound crystallizes in the monoclinic space group P21/c, with a=18.709(6), b=22.975(5), c=20.418(5) Å, β=99.31(2)° and Z=6; its structure consists of [Ni(dsit)2]22− dimers and isolated [Ni(dmf)6]2+ cations both centrosymmetric and non-centrosymmetric. The dimers are packed forming chains along the [101] direction with short Se·Se interdimer contacts. Additional interchains S·S contacts render this structure a three-dimensional character, never observed so far in other [Ni(dsit)2] salts. This compound exhibits semiconducting behavior with a room temperature conductivity (1 S cm−1) much higher than those reported for other salts of the [Ni(dsit)2] anion. Tight-binding band structure calculations were used to analyze the origin of the semiconducting properties of this salt. The magnetic susceptibility shows Curie behavior with C=1.25 emu K mol−1, typical of isolated Ni(II) ions as expected for the octahedrally coordinated [Ni(dmf)6]2+ cations.  相似文献   

14.
[EDO-TTF-CONH2][TCNQF4], triclinic system, space group P-1, a=8.2479(12) Å, b=12.282(2) Å, c=12.6842(18) Å, α=113.850(17)°, β=106.420(17)°, γ=90.284(19)°, V=1116.8(4) Å3; and [EDT-TTF-CONH2]2[TCNQF4], triclinic system, space group P-1, a=6.5858(9) Å, b=11.699(2) Å, c=12.2281(18) Å, α=104.000(19)°, β=93.611(17)°, γ=98.279(19)°, V=899.9(3) Å3, whose π-donor molecules, (ethylenedioxo)-carbamoyltetrathiafulvalene and (ethylenedithio)-carbamoyltetrathiafulvalene, respectively, differ solely by the nature of the chalcogen atoms in their outer ethylene dichalcogeno bridge, yet form very different charge-transfer complexes with the same π-acceptor. [EDO-TTF-CONH2•+]2 [TCNQF4•−]2 is a diamagnetic insulating ionic salt with a three-dimensional rock-salt-type structure based on discrete dimers while in the semi-conducting mixed-valence complex, [EDT-TTF-CONH2]2•+[TCNQF4•−], the mixed-valence dimers aggregate into infinite chains interspersed within parallel rows of non-interacting radical anions. It is shown how the robust and adaptable supramolecular amide hydrogen bond tweezers-like motifs common to the two solids simply comply to the 3-to-1 dimensionality reduction upon substitution of O for S.  相似文献   

15.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

16.
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both.  相似文献   

17.
The crystal structure of the double salt CoCl2·MgCl2·8H2O has been determined by the X-ray diffraction method. It crystallizes in the space group with a=6.0976(9), b=6.308(1), c=8.579(3) Å, α=81.99(2)°, β=88.40°, γ=84.61(1)°, Z=1, and R=0.027. The crystal consists of two kinds of well separated octahedra, [CoCl4(H2O)2]2− and [Mg(H2O)6]2+. The former is unique as aquachloro complexes of Co2+. In order to elucidate the reason prepared as such unique complexes in the double salts, formation energies for [MCl4(H2O)2]2− and [M(H2O)6]2+ (M=Co, Mg) have been calculated by using the density functional methods, and it has been revealed that the formation energies of the first coordination sphere for the metal ions and the Cl?H2O hydrogen bond networks around [CoCl4(H2O)2]2− play a decisive role in forming [CoCl4(H2O)2]2− with the regular octahedral geometry in the double salt.  相似文献   

18.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

19.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

20.
The new quaternary lanthanum copper oxysulfide La3CuO2S3 has been synthesized by the reaction of La2S3 and CuO at 1223 K. This compound crystallizes in space group Pnma of the orthorhombic system with four formula units in a cell of dimensions at 153 K of a=14.0318(7) Å, b=3.9342(2) Å, and c=12.5212(6) Å. The structure of La3CuO2S3 consists of a three-dimensional framework of interconnected LaOnS8−n bicapped trigonal prisms and CuS4 tetrahedra. Optical absorption measurements on a La3CuO2S3 single crystal led to derived band gaps of 2.01 eV in both the [010] and [001] directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号