首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Zirconia nanoparticles have been synthesized from zirconium hydroxide precipitates followed by a supercritical CO2 extraction. The microstructure evolution of these zirconia nanoparticles during the calcination at the moderate temperature has been investigated. Assisted by the analyses of TEM and XRD, small-angle X-ray scattering (SAXS) study offers possibilities to a comprehensive and quantitative characterization of the structural evolution on the nanometer scales. The as-synthesized zirconia sample exhibits a mass fractal structure constructed by the surface fractal particles. Such a structure can be preserved up to 300 °C. After calcination at 400 °C, considerable structural rearrangement occurs. In the interior of nanoparticles zirconia nanocrystallites emerge. It is the scattering from such zirconia nanoparticles that give rise to the broadened crossover in the ln[J(q)] vs. ln q plot and the scattering peak in the ln[q3J(q)] vs. q2 plot. With a further increase in the calcination temperature, the power-law region at large-q in ln J(q) vs. ln q plot expands, and the peak in ln[q3J(q)] vs. q2 plot shifts towards lower q values, indicating size increases in both the nanocrystallites and nanoparticles. Besides, the mass fractal structure constructed by zirconia nanoparticles can be largely preserved during the moderate temperature calcination.  相似文献   

2.
The formation of polycrystalline tin oxide nanoparticles (NP) and nanowires was investigated using nanocasting approach included solid-liquid strategy for insertion of SnCl2 precursor and SBA-15 silica as a hard template. HR-TEM and XRD revealed that during the thermal treatment in air 5 nm tin oxide NP with well defined Cassiterite structure were formed inside the SBA-15 matrix mesopores at 250 °C. After air calcination at 700 °C the NP assembled inside the SBA-15 mesopores as polycrystalline nanorods with different orientation of atomic layers in jointed nanocrystals. It was found that the structure silanols of silica matrix play a vital role in creating the tin oxide NP at low temperature. The pure tin chloride heated in air at 250 °C did not react with oxygen to yield tin oxide. Tin oxide NP were also formed during the thermal treatment of the tin chloride loaded SBA-15 in helium atmosphere at 250 °C. Hence, it is well evident that silanols present in the silica matrix not only increase the wetting of tin chloride over the surface of SBA-15 favoring its penetration to the matrix pores, but also react with hydrated tin chloride according to the proposed scheme to give tin oxide inside the mesopores. It was confirmed by XRD, N2-adsorption, TGA-DSC and FTIR spectra. This phenomenon was further corroborated by detecting the inhibition of SnO2 NP formation at 250 °C after inserting the tin precursor to SBA-15 with reduced silanols concentration partially grafted with tin chloride.  相似文献   

3.
Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 °C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 °C for 30 h, but after 30 h at 800 and 900 °C a major, unreported, hexagonal phase, isostructural with TAlO3 compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 °C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 °C. Subsequent annealing at 900 °C of the mechanically treated powder gives rise to the complete formation of the Gd3Ga5O12 garnet structure at the expense of the hexagonal phase and of the minor Gd4Ga2O9 oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.  相似文献   

4.
BaMoO4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 °C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 °C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba2+ and electronic transitions within MoO2−4, respectively. The optical band gaps of BaMoO4 were 3.38 and 2.19 eV, for crystalline (600 °C/2 h) and amorphous (200 °C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

5.
The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 °C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 °C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 °C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni2+ components. The NiAl2O4 spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 °C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 °C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N2O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains.  相似文献   

6.
A nano-sized mixed-ligand Cd(II) coordination polymer, {[Cd(bpa)(4,4′-bipy)2(H2O)2](ClO4)2}n (1); bpa = trans-1,2-bis(4-pyridyl)ethane and 4,4′-bipy = 4,4′-bipyridine, has been synthesized by a sonochemical method and characterized by IR and 1H NMR spectroscopy. Compound 1 grows in one dimension by two different bridging ligands, 4,4′-bipy and bpa. The thermal stability of compound 1 in the bulk form and nano-sized was studied by thermogravimetric (TG) and differential thermal analysis (DTA). The crystallinity of this compound was studied by X-ray powder diffraction and compared with an XRD simulation of the single crystal data. CdO nanoparticles were obtained by direct calcination at 500 °C and decomposition in oleic acid at 200 °C of the nano-sized compound 1. The obtained cadmium(II) oxide nano-particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

7.
Mesoporous silica, prepared in basic conditions, has been loaded (20% weight) with 12-molybdophosphoric (PMo) or 12-tungstophosphoric (PW) acid and calcined at different temperatures ranging between 250 and 550 °C. The samples have been characterised by N2 adsorption-desorption at −196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-visible diffuse reflectance, Raman spectroscopy and temperature programmed reduction (TPR). The acidity and catalytic activity have been, respectively, examined by monitoring the adsorption of pyridine and 2-butanol by FT-IR spectroscopy. The results indicate that PW and PMo acids are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles. While PMo retains its Keggin structure up to 550 °C, PW decomposes at this temperature into crystalline WO3 and phosphorous oxides. In both cases, the morphology, hexagonal symmetry and long-range order observed for the support are preserved with calcination up to 450 °C. The Brönsted-type acid sites found in all samples, whose surface concentration decreases as the calcination temperature increases, are responsible for the selective formation of cis-butene detected upon adsorption of 2-butanol. The sample containing PW calcined at 450 °C also shows selectivity to methyl ethyl ketone.  相似文献   

8.
Synthesis and characterization of vanadium oxides nanorods   总被引:1,自引:0,他引:1  
Vanadium oxides nanorods with high crystallinity and high surface area were synthesized by hydrothermal method using laurylamine hydrochloride, metal alkoxide and acetylacetone. The samples characterized by XRD, nitrogen adsorption isotherm, SEM, TEM, and SAED. Uniformly sized B phase VO2 nanorods had widths about 40-80 nm and lengths reaching up to 1 μm. V2O5 rodlike structured with the widths about 100-500 nm and the lengths of 1-10 μm were obtained by calcination at 400 °C for 4 h. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides under mild conditions.  相似文献   

9.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

10.
Zeolite rho was prepared by hydrothermal synthesis using an 18-crown-6 ether (18C6) as a structure-directing agent, and the effects of the calcination temperature for removal of 18C6 on the physicochemical properties and CO2-adsorption properties were investigated. CO2 adsorption on zeolite rho calcined at 150 °C was lower than that on samples calcined at temperatures above 300 °C. For samples calcined above 300 °C, CO2 adsorption increased with increasing calcination temperature up to 400 °C. It is thought that the pore volume for adsorption of CO2 increased as a result of 18C6 removal, resulting in increasing CO2 adsorption. A decrease in CO2 adsorption for calcination from 400 °C to 500 °C was observed. The particle size of zeolite rho increased with increasing 18C6 molar ratio. Particle sizes of 1.0-2.1 μm and 1.4-2.6 μm were found by field-emission scanning electron microscopy and dynamic light-scattering, respectively. The particle size is controlled in these regions by adjusting the 18C6 molar ratio. XRD showed that zeolite rho samples with 18C6 molar ratios of 0.25-1.5 had high crystallinity. The adsorbed amount of CO2 is almost constant, at 3.4 mmol-CO2 g−1, regardless of the 18C6 molar ratio. However, CO2 selectivity, which is the CO2/N2 adsorption ratio, decreased. The amount of CO2 adsorbed on zeolite rho is lower than that on zeolite NaX, but higher than that on SAPO-34. The CO2/N2 adsorption ratio for zeolite rho was higher than those for SAPO-34 and zeolite NaX.  相似文献   

11.
CoMCM-41 mesoporous molecular sieves with different amounts of cobalt were synthesized via the microwave irradiation method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and N2 adsorption-desorption technique, and thermal and hydrothermal stabilities of synthesized CoMCM-41 samples were also investigated. Results show that these synthesized materials have typical mesoporous structure of MCM-41. Also, specific surface area and pore volume of synthesized CoMCM-41 decrease with increasing amount of cobalt added, and mesoporous ordering also decreases. When the molar ratio of SiO2:CoO in the starting material is 1.0:0.05, mesoporous ordering of synthesized CoMCM-41 is the best among the four doping contents. On the other hand, results of thermal and hydrothermal tests show that CoMCM-41 after calcination at 750 °C for 3 h or hydrothermal treatment at 100 °C for 5 days still retains mesostructure. However, mesoporous framework is entirely damaged after calcination at 850 °C for 3 h.  相似文献   

12.
Nanophase europium-doped yttrium carbonate precursors are subjected to heat treatments, ranging from 300 °C to 1100 °C for dwell times of 5 min, 30 min, and 180 min. XRD, TEM, FT-IR, fluorescence, fluorescence excitation, and fluorescence lifetime measurements are used to characterize the materials. Upon heating, the material transitions through several amorphous stages until it reaches the crystalline cubic Y2O3 phase. DSC measurements show an exothermic transition at 665.7 °C, indicating the formation of crystalline Y2O3. The grain size development is fitted by the relaxation equation and yields an activation energy of 50.3 kJ/mol. The amorphous phases are characterized by inhomogenously broadened optical spectra. Heating up to 700 °C leads to an increased fluorescence lifetime (from about 1 ms to 2.4 ms). As the material is heated to higher temperatures and completes the formation of the crystalline cubic Y2O3 phase, the optical spectra become narrower and the fluorescence lifetime decreases to about 1.2 ms.  相似文献   

13.
Cubic bismuth zinc niobate pyrochlore (base composition (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7) powders were successfully prepared by a chemical method. The formation mechanism of the pyrochlore phase was investigated by TG-DSC, FT-IR, Raman, and X-ray diffraction (XRD). The optical bandgap for the powders treated at temperatures ranging from 500 to 700 °C is 3.0-3.1 eV, indicating low crystallization temperature for the pyrochlore phase. No detectable intermediary phases as BiNbO4 or a pseudo-orthorhombic pyrochlore were observed at any time and the cubic-BZN phase was already formed after thermal treatment at temperatures as low as 500 °C. The phase formation study reveals that a well-crystallized single-phased nanopowder is obtained after calcination at 700 °C, indicating that the chemical synthesis conferred a higher chemical homogeneity and reactivity on the powder, modifying the crystallization mechanism.  相似文献   

14.
Near-infrared (NIR) and mid-infrared (MIR) spectroscopies were used to characterize the hydroxyl groups present in a sepiolite and its calcination products at 250, 500 and 800 °C. Calcining the sepiolite at 250 °C was found to result in its dehydration through the loss of coordination water. Raising the calcination temperature to 500 °C caused the sepiolite structure to fold and hydroxyl groups in octahedral layers to be removed. Finally, calcination at 800 °C resulted in a phase change leading to enstatite, as confirmed by XRD spectroscopy.  相似文献   

15.
The formation of maghemite, γ-Fe2O3 nanoparticles has been studied by in situ X-ray powder diffraction. The maghemite was formed by thermal decomposition of an amorphous precursor compound made by reacting lauric acid, CH3(CH2)10COOH with Fe(NO3)3·9H2O. It has been shown that cubic γ-Fe2O3 was formed directly from the amorphous precursor and that vacancy ordering starts about 45 min later at 305 °C resulting in a tripled unit cell along the c-axis. The kinetics of grain growth was found to obey a power law with growth exponents n equal to 0.136(6) and 0.103(5) at 305 and 340 °C, respectively. Particles with average sizes of 12 and 13 nm were obtained in 86 and 76 min at 305 and 340 °C, respectively. The structure of cubic and vacancy ordered phases of γ-Fe2O3 was studied at 305 °C by Rietveld refinements.  相似文献   

16.
Molybdenum oxide thin films have been successfully prepared by direct UV irradiation of amorphous films of a molybdenum dioxide acetylacetonate complex on Si(1 0 0) substrates. Photodeposited films were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the surface morphology examined by Atomic Force Microscopy (AFM). It was found that as-photodeposited films are uniform and smooth, with thickness of 350 nm, with rms surface roughness of 28 nm and contain non-stoichiometric oxides (MoO3−x). The results of XRD analysis showed that post-annealing of the films in air at 450 °C transforms the sub-oxides to α-MoO3 phase with a much rougher surface morphology (rms = 144 nm). The as-photodeposited MoO3−x films are amorphous, and exhibit better optical quality than annealed films.  相似文献   

17.
This paper developed a novel method, the rheological phase reaction method, to synthesize nanospherical Fe3BO6. The sizes and morphologies of products vary with the calcination temperatures. Spherical particles with a uniform size about 40 nm in a monodisperse state were obtained at 800 °C, while the spherical particles with a larger size of 100-500 nm were obtained at 900 °C. The electrochemical properties of these Fe3BO6 nanospheres were investigated. Sample synthesized at 800 °C delivers a high reversible capacity above 500 mAh g−1. Sample synthesized at 900 °C possesses relatively good cycleability with a capacity retaining of 376 mAh g−1 after 10 cycles. The measurement of electrochemical impedance spectra for the first time indicated that smaller Fe3BO6 nanoparticles intend to give higher impedance of solid-electrolyte interface layer and lower charge-transfer impedance after the first discharge. Additionally, it can be speculated that the increase of resistance charge-transfer is the possible reason for the capacity fading during cycling.  相似文献   

18.
The hollandite Ba1Cs0.28Fe0.82Al1.46Ti5.72O16, which has been proposed for the cesium-specific conditioning, can be synthesized either by an alcoxyde or a dry route. In both cases, a two-step protocol is applied, i.e., a calcination at 1000 °C followed by a sintering at 1200 °C. After sintering, both synthetic processes lead to a tetragonal form. According to the X-ray diffraction (XRD) patterns collected at the barium and the cesium K absorption edges, the different positions of these two elements have been evidenced with a more centered position in the oxygen cubic site of the tunnel for Ba than for Cs. On the contrary, after calcination, the two synthetic routes yield different products. The alcoxyde route gives rise to a mixture of the aforementioned Cs- and Ba-containing tetragonal I4/m hollandite, a Cs-only-containing monoclinic I2/m hollandite and an unidentified phase with a weak coherence length containing only Ba. The dry route yields a single tetragonal hollandite material containing Ba and Cs slightly different in composition from the targeted compound.  相似文献   

19.
In this paper non-stoichiometric tungsten oxide thin films have been successfully prepared by direct UV irradiation of bis-β-diketonate dioxotungsten(VI) precursor complexes spin-coated Si(1 0 0) substrates. Photodeposited films were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the surface morphology examined by Atomic Force Microscopy (AFM). The results of XRD analysis showed that the as-photodeposited WO3−x films are amorphous and have a rougher surface than thermally treated films. Post-annealing of the films in air at 500 °C transforms the sub-oxides to a monoclinic WO3 phase.  相似文献   

20.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号