首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most human response to vibration standards imply that low vibration levels are acceptable for longer periods than higher levels. In such standards it is usually assumed that the relationship between exposure duration and vibration level is of a similar form for a wide range of different types of motion. The experiment described in this paper was conducted to determine whether the relative discomfort produced by 4 Hz and 16 Hz sinusoidal whole-body vertical (az) vibration was dependent on the duration of the vibration exposure.Each of eight seated subjects was exposed to two 36-minute vibration sessions. Both sessions consisted of ten-second periods of 4 Hz and 16 Hz vibration alternating continuously. In one session the 4 Hz motion was set at the “standard” level of 0·75 m/s2 r.m.s. while the level of the 46 Hz “test” motion could be adjusted by the subjects. In the other session the 16 Hz motion was the standard at 0·75 m/sl r.m.s. and the level of the 4 Hz motion could be adjusted. The subjects were required to control the intensity of the test motion to compensate for periodic changes in its intensity made by the experimenter and so to maintain it at a level which produced similar discomfort to that caused by the standard motion.It was found that the relationship between the average levels of the two motions when adjusted to produce similar discomfort was independent of the vibration duration. The findings are discussed in relation to other laboratory research and the need for a better understanding of the effects of the duration of a vibration on its acceptability.  相似文献   

2.
Uncertainties associated with field assessments of daily exposure to whole-body vibration (WBV) have been investigated in four categories of work vehicles (fork lift trucks, wheel loaders, garbage trucks, buses) in different working conditions. A total of 50 vehicles were included in the study. WBV exposures were measured in different field conditions in marble quarries, marble laboratories, dockyards, paper mills, transportation and public utilities: over 700 individual vibration measurements were analysed to quantify relevant uncertainty components due to changes in the operators’ working methods, variations in the characteristics and conditions of the machines, changes in the characteristics of the travelling surface, uncertainty in the evaluation of exposure duration, and systematic errors due to measurement equipment. The methods used in the study to calculate measurement uncertainties are in accordance with the ISO publication “Guide to the Expression of Uncertainty in Measurement”. The study made it possible to isolate major sources of uncertainty in field assessment of daily exposures to WBV. The investigation revealed that, in all the field conditions, differences in the characteristics of the machines and/or in working cycles were the most relevant uncertainty components. The overall relative uncertainty p in WBV field assessment was in the range 14% <p<32%, whereas the relative uncertainty caused by transducer and measurement equipment in a correctly calibrated system is less than 4%.  相似文献   

3.
Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: ‘upright’, ‘lordotic’, ‘anterior lean’, ‘knees bent’, and ‘knees more bent’. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously.The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5–6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.  相似文献   

4.
Linear lumped parameter models of the apparent masses of human subjects in standing positions when exposed to vertical whole-body vibration have been developed. Simple models with a single degree-of-freedom (d.o.f.) and with two (d.o.f.) were considered for practical use. Model parameters were optimised using both the mean apparent mass of 12 male subjects and the apparent masses of individual subjects measured in a previous study. The calculated responses of two (d.o.f.) models with a massless support structure showed best agreement with the measured apparent mass and phase, with errors less than 0.1 in the normalised apparent mass (i.e., corresponding to errors less than 10% of the static mass) and errors less than 5° in the phase for a normal standing posture. The model parameters obtained with the mean measured apparent masses of the 12 subjects were similar to the means of the 12 sets of parameters obtained when fitting to the individual apparent masses. It was found that the effects of vibration magnitude and postural changes on the measured apparent mass could be represented by changes to the stiffness and damping in the two (d.o.f.) models.  相似文献   

5.
The exposure-response relationships between subjective annoyance with sleep disturbance from railway trains and road traffic noise were established from an extensive social survey by CENVR (Center for Environmental Noise and Vibration Research) in Korea. The objectives of this research are to determine the long-term effects of noise on sleep and to compare the exposure-response relationships from different noise sources with those from other studies and to elucidate the effects of some modifying factors on subjective responses to noise. From an investigation of the percentage of a highly sleep-disturbed population (%HSD) in response to railway and road traffic noise, it was found that sleep is affected more by railway noise than by road traffic noise. The effects of non-acoustical factors on the responses were examined and sensitivity was shown to be a significant modifying factor, as it pertains to subjective sleep disturbance. A comparison of the response curves from an analysis of pooled data from predominantly European surveys by Miedema and Vos [Behav. Sleep Med. 5, 1-20 (2007)] with the response curves from this survey showed more of a subjective sleep disturbance response in this survey to railway noise, whereas there was no significant difference in terms of a response to road traffic noise.  相似文献   

6.
A general theory is developed which describes the interdependence of the small-amplitude internal motion and reorientation of a molecule in an anisotropic environment. The intramolecular motion is shown to be a superposition of two approximately independent components: orientation-dependent distortion and vibration. The effects of these motions on the NMR spectral parameters are calculated. The contributions originating from the molecular distortions are shown to explain all the apparent residual deviations of the observed benzene structure, corrected for harmonic vibrations, from a regular hexagon.  相似文献   

7.
Humans are exposed to whole-body vibration in many types of environment. In almost all cases, the vibration to which the human is exposed comprises multi-axis vibration, such that vibration occurs in all directions simultaneously. Despite the complex nature of vibration to which humans are exposed in the workplace, almost all laboratory studies investigating the biomechanical response of the person have been completed using single-axis simulators. This paper presents a study whereby 15 male subjects were exposed to single-axis whole-body vibration in the x-, y- and z-directions and dual-axis vibration in the xy-, xz-, and yz-directions using a 6 degree-of-freedom vibration simulator. All vibration magnitudes were 0.4 ms−2 rms in each axis. Acceleration and force was measured in the x-, y-, and z-direction during all trials. Subjects sat in two postures (‘back-on’ and ‘back-off’) on a flat rigid seat. Apparent masses measured using single-axis and dual-axis vibration stimuli showed comparable results; similarly, cross-axis apparent masses (i.e. the ratio of the force in one direction to the acceleration in another direction) were almost identical for the single- and dual-axis vibration stimuli. All results were in agreement with data previously published using single-axis vibration. In most cases, the peaks in the apparent mass and the cross-axis apparent mass occurred at a slightly lower frequency for the dual-axis vibration than for the single-axis vibration. It is hypothesised that this change is due to a nonlinear effect, analogous to that which occurs with increasing vibration magnitude for single-axis vibration.  相似文献   

8.
The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.  相似文献   

9.
Psychophysical detection thresholds for vibration were measured at the thenar eminence and volar forearm using a 0.008-cm2 (1.0-mm-diam) contactor. Measurements were made at 14 sinusoidal frequencies between 12 and 500 Hz at six skin temperatures between 15 degrees and 40 degrees C. The results are consistent with the hypothesis that three functionally discrete non-Pacinian afferent systems mediate vibrotactile responses. It was possible to identify the response characteristic of the rapidly adapting (Meissner) system, but it was not possible to isolate the responses of two slowly adapting (SAI, SAII) systems.  相似文献   

10.
The “Galileo Galilei” airport is a civil and military airport quite close to central Pisa. Although the airport brings benefits in terms of tourism and different types of income, the air traffic growth exacerbates the exposition to aircraft noise. This could significantly affect public health. To this day, a small number of studies takes into account the standard indicators of Europe by considering noise emission data for military aircrafts. We estimated the noise impact produced by the airport and we evaluated the related exposed population by using the Integrated Noise Model (INM). The noise power levels of both commercial and military flights have been considered as an input to the model. Predicted levels were validated by means of a noise-monitoring network. A new tracking system (AirNav Radar) that captures Automatic Identification System (AIS) signals emitted by each aircraft has been used to emulate takeoff and landing procedures. This improves the accuracy of the input to the model. We simulated noise maps for present and future scenarios, including those following the application of noise reduction measures. For each situation, we also estimated the exposure of the population and the percentages of highly annoyed and highly sleep disturbed people. We show the utility of AIS data and their specific elaboration to draw up noise abatement measures in order to reduce the noise impact on population and allow the airport development.  相似文献   

11.
Expressions are derived for the acoustical impedance of a rectangular enclosure and of a finite annular cylindrical enclosure. The derivation is valid throughout the frequency range in which all dimensions of the enclosure are much less than the wavelength. The results are valid throughout the range from adiabatic to isothermal conditions in the enclosure. The effect is equivalent to placing an additional, frequency-dependent complex impedance in parallel with the adiabatic compliance. As the thermal boundary layer grows to fill the cavity, the reactive part of the impedance varies smoothly from the adiabatic value to the isothermal value. In some microphones, this change in cavity stiffness is sufficient to modify the sensitivity. The resistive part of the additional cavity impedance varies as the inverse square root of frequency at high frequencies where the boundary layer has not grown to fill the enclosure. The thermal modification gives rise to a thermal noise whose spectral density varies asymptotically as l/f(3/2) above the isothermal transition frequency.  相似文献   

12.
The time-independent diffusion equation that describes an optical power flow in an axially perturbed multimode fibre with a lossy cladding is solved. On this basis the attenuation of plastic-clad silica (PCS) fibres depending on cladding loss, mode coupling due to fibre perturbation, launching conditions and fibre length is investigated by means of computer modelling. This involves not only attenuation properties of PCS fibres by themselves, but also how they are seen by the backscattering measurement technique.  相似文献   

13.
Subjective and dynamic responses of seated subjects exposed to simultaneous vertical and fore-and-aft sinusoidal whole-body vibration were investigated. The effect of the phase difference between the vertical and the fore-and-aft vibration on the responses was of a particular interest in this study. Fifteen subjects were exposed to dual-axis vibrations at six frequencies (2.5-8 Hz) and at eight phases between the two single-axis components (0-315°). The magnitude of vibration in each axis was constant at 0.7 m s−2 rms. Discomfort caused by vibration was measured by the method of magnitude estimation. The motion of the body were measured at the head and three locations along the spine with accelerometers attached to the body surface. The most significant effect of the phase between the two single-axis components on the discomfort was observed at 5 Hz: about 40% difference in the median discomfort estimate caused by changing the phase. The transmissibilities from vertical seat vibration to vertical motions of the spine varied from 0.5 to 2.0 by changing the phase between the two single-axis components at frequencies from 2.5 to 5 Hz. The effect of the phase observed in the dynamic response was not predicted by the superposition of the responses to each single-axis vibration. The discomfort caused by the dual-axis vibration tended to be correlated better with the combinations of the dynamic responses measured in the two axes than with the dynamic responses in a single axis.  相似文献   

14.
An exact solution is obtained for the normal vibration frequencies of a rectangular array of identical point-masses. The method of intermediate co-ordinate transformation, which was introduced in a previous article in this journal, makes it possible to treat the system as a coupled set of linear chains. By this means, the analysis can be made considerably simpler than the usual treatment. The result shows that the coupling of the normal modes of the separate chains is restricted to those modes having the same index numbers. Thus, the usual problem involving N1 × N1 secular determinant, where N1 is the number of particles contained in each separate chain, is reduced to that involving only a 2 × 2 determinant. The calculation in the present article will serve as a basis for the vibrational analyses of more complicated problems involving two- and three-dimensional arrays of masses that are perturbed by “disorder”.  相似文献   

15.
This paper reports on strategic noise mapping research conducted in Dublin, Ireland. Noise maps are constructed for the day–evening–night-time and night-time periods and levels of population exposure are estimated for the same periods. In methodological terms, the research uses the UK’s calculation of road traffic noise (CRTN) method for calculating noise levels in the study area. This method has been adopted as the interim calculation method by the Irish authorities responsible for meeting the obligations set out in the EU Environmental Noise Directive (END). The research also investigates the usefulness of three noise mitigation measures for ‘acoustical planning’ purposes: traffic reductions, speed reductions and erection of acoustical barriers. The results indicate that levels of population exposure during night-time are extremely high relative to guideline limits set down by the World Health Organisation. In addition, the results highlight the significant role that certain noise mitigation measures can play in good ‘acoustical planning’.  相似文献   

16.
A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, the elastic-plastic effect, and initial void size. To some extent, void interaction could be accounted for in this approach. Based on this model, the simulation of spall experiments for copper is performed by using the Lagrangian finite element method. The simulation results are in good agreement with experimental data for the free surface velocity profile, stress record behind copper target, final porosity, and void concentrations across the target. The influence of elastic-plastic effect upon the damage evolution is explored. The correlation between the damage evolution and the history of the stress near the spall plane is also analyzed.  相似文献   

17.
张凤国  周洪强  胡军  邵建立  张广财  洪滔  何斌 《中国物理 B》2012,21(9):94601-094601
A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, elastic-plastic effect, and initial void size. To some extent, void interaction could be accounted for in this approach. Based on this model, the simulation of spall experiments for copper is performed with the Lagrangian finite element method. The simulation results are in good agreement with experimental data for the free surface velocity profile, stress record behind copper target, final porosity, and void concentrations across the target. The influence of elastic-plastic effect upon the damage evolution is explored. The correlation between the damage evolution and the history of the stress near the spall plane is also analyzed.  相似文献   

18.
A new technique in which two photoions are detected in coincidence with a photoelectron is described, and its advantages in the study of double ionization are explored. The power of the technique to distinguish decay routes is demonstrated by proof that the equal mass fragmentation of SO22+produces predominantly O2+ + S+and not O+ + O+. The dissociation of CH3I2+ following He(II) ionization is shown to involve at least twelve distinct pathways, instead of the six previously known.A major potential of the new technique is to elucidate the dynamics of three-fragment decays: it is shown that the formation of C+ + S+ from CS22+ can be modelled as a sequential, rather than a simultaneous explosion. The new technique gives the first demonstration, in the case of NO2, of angular anisotropy in the electrons ejected in double photoionization. The counting statistics of the new method are shown to allow absolute calibration of the detection efficiencies for both electrons and ions. Finally, the technique offers a new method for the detection and investigation of slowly dissociating doubly-charged ions.  相似文献   

19.
Acoustic analysis techniques were used to investigate the short-term consequences of vocally violent behavior, and to compare voice production before and after training in hygienic laryngeal release (HLR) techniques. Twenty-seven actors ranging in age from 17 to 48 years were audiorecorded before and after multiple productions of 4 vocally violent behaviors: grunting, groaning, sobbing, and shouting. After training in HLR techniques, the experimental protocol was repeated. Audiorecordings of vowels (produced at 3 pitch levels: modal F0, minimum F0, maximum F0) before and after vocal violence, and before and after HLR training, were analyzed using the Multidimensional Voice Program (4305, Kay Elemetrics Corp, Lincoln Park, NJ). After vocal violence, no consistent acoustic changes were detected for voice generated at modal and minimum F0; however, significant increases in both fundamental frequency range and maximum F0 were observed. After training in HLR techniques, acoustic measures sensitive to pitch and amplitude perturbation, and non-harmonic noise, improved across pitch levels. The results also indicated that vocal training does defend the laryngeal system from undesirable changes related to vocally violent maneuvers that might surface at the extremes of an actor's pitch range. Because the HLR technique used in this investigation was multimodal, interesting questions are raised regarding which aspect of training is primarily responsible for the observed effects. Further study is required to identify such factors.  相似文献   

20.
The smallest change in vibration intensity for the change to be perceptible (i.e. intensity difference threshold) has not previously been reported for vibration of the foot. This study investigated the influence of vibration magnitude and vibration frequency on intensity difference thresholds for the perception of vertical sinusoidal vibration of the foot. It was hypothesised that relative intensity difference thresholds (i.e. Weber fractions) for 16-Hz vibration mediated by the non-Pacinian I (NPI) channel would differ from relative intensity difference thresholds for 125-Hz vibration mediated by the Pacinian (P) channel. Absolute thresholds, difference thresholds, and the locations of vibration sensation caused by vertical vibration of the right foot were determined for 12 subjects using the up-down-transformed-response method together with the three-down-one-up rule. The difference thresholds and locations of sensation were obtained at six reference magnitudes (at 6, 9, 12, 18, 24, 30 dB above absolute threshold—i.e. sensation levels, SL). For 16-Hz vibration, the median relative difference thresholds were not significantly dependent on vibration magnitude and were in the range 0.19 (at 30 dB SL) to 0.27 (at 9 dB SL). For 125-Hz vibration, the median relative difference thresholds varied between 0.17 (at 9 dB SL) and 0.34 (at 30 dB SL), with difference thresholds from 6 to 12 dB SL significantly less than those from 18 to 30 dB SL. At vibration magnitudes slightly in excess of absolute thresholds (i.e. 6-12 dB SL) there were no significant differences between Weber fractions obtained from the P channel (at 125 Hz) and the NPI channel (at 16 Hz). At 24 and 30 dB SL, the 125-Hz Weber fractions were significantly greater than the 16-Hz Weber fractions. Differences in the 125-Hz Weber fractions may have been caused by a reduction in the discriminability of the P channel at high levels of excitation, resulting in one or more NP channel mediating the difference thresholds at magnitudes greater than 18 dB SL. At high magnitudes, a change of channel mediating the Weber fractions may have been responsible for different Weber fractions with 16- and 125-Hz vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号