首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A full potential FLAPW-GGA method is used for the first time to study the electronic structure of hexagonal solid solutions of tungsten carbonitrides WC1?x N x (0 ≤ x ≤ 0.5) and to calculate their equilibrium structural parameters, density, cohesion energy, and coefficients of low-temperature heat capacity and Pauli paramagnetic susceptibility. They are discussed in comparison with similar values for initial binary phases: WC and WN and also hypothetical solid solutions WB0.5C0.5 and WB0.5N0.5.  相似文献   

2.
This article describes the preparation of multi-walled carbon nanotube—chalcogenide glass composite by direct synthesis and the melt-quenching method. The carbon nanotubes—chalcogenide glass composite was characterized by high-resolution transmission electron microscopy (HRTEM), TEM/energy-dispersive X-ray spectroscopy, low energy electron excited X-ray spectroscopy, Raman spectroscopy, spectroscopic ellipsometry, microhardness, and impedance spectroscopy. CNTs-AgAsS2 glass composite possess highly increased ionic conductivity, from σ25 °C=4.38±0.0438×10−6 to σ25 °C=6.57±0.0657×10−6 S cm−1 and decreased refractive index from n=2.652 to 2.631 at the wavelength λ=1.55 μm.  相似文献   

3.
Complexes of type {cis-[Pt](μ-σ,π-CCPh)2}AgX (3a, [Pt] = (bipy′)Pt, X = FBF3; 3b, [Pt] = (bipy′)Pt, X = FPF5; 3c, [Pt] = (bipy)Pt, X = OClO3; 3d, [Pt] = (bipy′)Pt, X = BPh4; bipy′ = 4,4′-dimethyl-2,2′-bipyridine; bipy = 2,2′-bipyridine) are accessible by combining cis-[Pt](CCPh)2 (1a, [Pt] = (bipy′)Pt; 1b, [Pt] = (bipy)Pt) with equimolar amounts of [AgX] (2a, X = BF4; 2b, X = PF6; 2c, X = ClO4; 2d, X = BPh4). In 3a-3d the platinum(II) and silver(I) ions are connected by σ- and π-bonded phenyl acetylide ligands. When the molar ratio of 1 and 2 is changed to 2:1 then trimetallic [{cis-[Pt](μ-CCPh)2}2Ag]X (8a, [Pt] = (bipy)Pt, X = BF4; 8b, [Pt] = (bipy′)Pt, X = PF6; 8c, [Pt] = (bipy)Pt, X = BF4) is produced. The solid state structure of 8a was determined by single X-ray crystal structure analysis. In 8a the silver(I) ion is embedded between two parallel oriented cis-[Pt](CCPh)2 units. Within this structural arrangement the phenyl acetylides of individual [Pt](CCPh)2 entities possess a μ-bridging position between Pt(II) and Ag(I). In addition, a very weak dative Pt → Ag interaction is found (Pt-Ag 2.8965(3) Å). The respective silver carbon distances Ag-Cα (2.548(7), 2.447(7) Å) and Ag-Cβ (3.042(7), 2.799(8) Å)(PtCαCβPh) confirm this structural motif.Complexes 8a-8c isomerize in solution to form trimetallic [{cis-[Pt](μ-σ,π-CCPh)2}2Ag]X (9a, [Pt] = (bipy)Pt, X = BF4; 9b, [Pt] = (bipy′)Pt, X = PF6; 9c, [Pt] = (bipy)Pt, X = ClO4). In the latter molecules the organometallic cation [{cis-[Pt](μ-σ,π- CCPh)2}2Ag]+ is set-up by two nearly orthogonal positioned [Pt](CCPh)2 entities which are hold in close proximity by the group-11 metal ion. Within this assembly all four PhCC units are η2-coordinated to silver(I). A possible mechanism for the formation of 9 is presented.  相似文献   

4.
Several complexes containing Co3 carbonyl clusters end-capping carbon chains of various lengths are described. Pd(0)/Cu(I)-catalysed reactions between {Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 and I(CC)2SiMe3 or FcCCI gave {Co33-C(CC)xR}(μ-dppm)(CO)7 [x = 4, R = SiMe33; x = 3, R = Fc 8]; treatment of 3 with NaOMe and AuCl(PPh3) gave 4 [x = 4, R = Au(PPh3)]. Related preparations of Co33-C(CC)2[Ru(PP)Cp′]}(μ-dppm)n(CO)9−2n [PP = (PPh3)2, Cp’ = Cp, n = 1, 5; PP = dppe, Cp′ = Cp, n = 1, 6; 0, 7] are also described. Syntheses of bis-cluster complexes {Co3(μ-dppm)(CO)7}2(μ-Cx) (x = 14, 12; 16, 9; 18, 11; 26, 10) - the latter being the longest cluster-capped Cx chains so far described - and the mercury-bridged compounds Hg{(CC)xC[Co3(μ-dppm)(CO)7]}2 (x = 1, 13; 2, 14) are reported. The molecular structures of 7, 12, 13 and 14, as well as of Co33-CCCSiMe3)(μ-dppm)(CO)6(PPh3) (15) and Co33-CC(O)OEt}(μ-dppm)(CO)7 (16), are reported.  相似文献   

5.
The syntheses of 4-C-Me-DAB [1,4-dideoxy-1,4-imino-4-C-methyl-d-arabinitol] from l-erythronolactone and of 4-C-Me-LAB [from d-erythronolactone] require only a single acetonide protecting group. The effect of pH on the NMR spectra of 4-C-Me-DAB [pKa of the salt around 8.4] is discussed and illustrates the need for care in the analysis of both coupling constants and chemical shift. 4-C-Me-DAB (for rat intestinal sucrase Ki 0.89 μM, IC50 0.41 μM) is a competitive—whereas 4-C-Me-LAB (for rat intestinal sucrase Ki 0.95 μM, IC50 0.66 μM) is a non-competitive—specific and potent α-glucosidase inhibitor. A rationale for the α-glucosidase inhibition by DAB, LAB, 4-C-Me-DAB, 4-C-Me-LAB and isoDAB—but not isoLAB—is provided. Both are inhibitors of endoplasmic reticulum (ER) resident α-glucosidase I and II.  相似文献   

6.
Rod-like organogold(I) complexes [AuR(CNC6H4O(O)CC6H4OC10H21-p)] were prepared and their liquid crystal behaviour was studied. Depending on the nature of R, the synthetic methodology was different. Thus, for R = substituted alkynyl ligands, the new compounds were prepared in two steps:(i) reaction of [AuCl(tht)] (tht = tetrahydrothiophene) with R′CCH(R′ = C5H4N, C6H4CN, C6H4CCC5H4N) in the presence of NaOAc to give insoluble [Au(CCR′)]n; (ii) reaction of the latter polymers with the isonitrile CNC6H4O(O)CC6H4OC10H21-p.For R = fluorinated aryls, the complexes were prepared by displacement of tht from the compounds [AuR(tht)] (R = C5F4N, C6F4C5H4N, C6F5) with isonitrile.In addition, an unexpected ionic derivative [Au(CCC5H4NC10H21)2][Au(CCC5H4N)2] was formed in the reaction between [PPh4][Au(CCC5H4N)2] and C10H21I. All these compounds have been characterized by IR and NMR spectroscopy and mass spectrometry. The X-ray crystal structure of the compound with R = CCC5H4N shows a linear molecule in which the gold atom is surrounded by the pyridine-containing acetylene and the isonitrile ligand, and no direct gold-gold interaction occurs. Six of the neutral compounds are liquid crystals and their optical, thermal and thermodynamic data were analyzed and compared in terms of molecular polarizability.  相似文献   

7.
An approach to the synthesis of nitronyl nitroxide 2,2′-(buta-1,3-diyne-1,4-diyl)bis(4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide 1-oxyl) (4) was developed. Compound 4 is the first diradical with nitronyl nitroxide groups directly linked through a diacetylene fragment. In solid phase the diradicals are arranged in stacks with parallel CC fragments, with the distances between the terminal carbon atoms of the neighboring diacetylene groups (T and d) being 6.170 and 4.466 Å, respectively, and the angle between the translation vector and the median line passing through the CCCC fragment of 45.9°. The values of T and d are outside the range of structural criteria allowing a topochemical reaction. Thus UV irradiation does not initiate solid phase polymerization of 4. After exposure at 373 K for 1 h the crystals of 4 turn dark-brown, become X-ray amorphous and lose the majority of their paramagnetic centers without significantly changing their mass. Upon further heating up to 400-420 K the product explodes, releasing about 360 kJ/mol of heat. A diluted solution of 4 in 1,4-dioxane produces an EPR spectrum typical of a strong exchange (a multiplet of nine broadened lines with A4N = 0.35 mT), indicating the efficiency of the CCCC fragment as an exchange channel. The character of the experimental μeff(T) dependence for 4 indicates a strong intramolecular antiferromagnetic-type exchange interaction (J/kB ∼ −104 K) and the dominating weak intermolecular ferromagnetic exchange.  相似文献   

8.
The oxidative addition of C6H4-1,4-I2 (1) to Pd(PPh3)4 (2) gives mononuclear trans-(Ph3P)2Pd(C6H4-4-I)(I) (3), which can be converted to trans-(Ph3P)2Pd(C6H4-4-I)(OTf) (5) by its reaction with [AgOTf] (4). Complex 5 can be used in the high-yield preparation of a series of unique cationic mono- and dinuclear palladium complexes of structural type [trans-(Ph3P)2Pd(C6H4-4-I)(L)]+ (7, L = C4H4N2; 9a, L = C5H4N-4-CN; 9b, L = NC-4-C5H4N) and [trans-(C6H4-4-I)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-I)]2+ (14a, NN = C6H4-1,4-(CN)2; 14b, NN = (C6H4-4-CN)2; 14c, NN = 4,4′-bipyridine (=bipy)). Complexes 7, 9 and 14 rearrange in solution to give [trans-(Ph3P)2Pd(C6H4-4-PPh3)(L)]2+ (10, L = C4H4N2; 12a, L = C5H4N-4-CN; 12b, L = NC-4-C5H4N) and [trans-(C6H4-4-PPh3)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-PPh3)]4+ (15a, NN = C6H4-1,4-(CN)2; 15b, NN = (C6H4-4-CN)2) along with {[(Ph3P)2(Ph3P-4-C6H4)Pd(μ-I)]2}2+ (11).The solid state structures of 3, 9a, 10, 11 and 15b are reported. Most characteristic for all complexes is the square-planar coordination geometry of palladium with trans-positioned PPh3 ligands. In 3 the iodide and the 4-iodo-benzene are linear oriented laying with the palladium atom on a crystallographic C2 axes. In 9a this symmetry is broken by steric interactions of the PPh3 ligands with the 4-cyanopyridine and 4-iodobenzene groups. Compound 11 contains two μ-bridging iodides with different Pd-I separations showing that the ligand induces a stronger trans-influence than PPh3. In 15b, the Ph3PC6H4Pd ← NCC6H4C6H4CN → PdC6H4PPh3 building block is rigid-rod structured with the C6H4 units perpendicular oriented to the Pd coordination plane, while the biphenylene connecting moiety is in-plane bound.  相似文献   

9.
10.
SbPO4, a phosphate with a layered structure, was tested as an electrode material for lithium cells spanning the 3.0-0.0 V range. Two main electrochemical processes were detected as extensive plateaus at ca. 1.6 and 0.7 V in galvanostatic measurements. The first process was found to be irreversible, thus excluding a potential intercalation-like mechanism for the reaction and being better interpreted as a decomposition reaction leading to the formation of elemental Sb. This precludes the use of this compound as a cathodic material for lithium cells. By contrast, the process at 0.7 V is reversible and can be ascribed to the formation of lithium-antimony alloys. The best electrochemical response was obtained by cycling the cell at a C/20 discharge rate over the voltage range 1.25-0.25 V. Under these conditions, the cell delivers an average capacity of 165 Ah/kg—a value greater than those reported for other phosphates—upon successive cycling.  相似文献   

11.
12.
Practical method of synthesis of the 1,4-dioxane derivative of the closo-dodecaborate anion was developed. The cleavage of the dioxonium ring in [B12H11O(CH2CH2)2O] with acetylenic alcohols gave rise to the preparation of closo-dodecaborate derivatives with terminal acetylene group. These compounds can be introduced into click reactions with phenylazide leading to the corresponding triazoles. The structures of (Bu4N)[B12H11O(CH2CH2)2O] and (Bu4N)2[B12H11(OCH2CH2)2OCH2CCH] · 0.5HOCH2CCH were determined by single-crystal X-ray diffraction.  相似文献   

13.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

14.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

15.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

16.
The synthesis of the ruthenium σ-acetylides (η5-C5H5)L2Ru-CC-bipy (4a, L = PPh3; 4b, L2 = dppf; bipy = 2,2′-bipyridine-5-yl; dppf = 1,1′-bis(diphenylphosphino)ferrocene) is possible by the reaction of [(η5-C5H5)L2RuCl] (1) with 5-ethynyl-2,2′-bipyridine (2a) in the presence of NH4PF6 followed by deprotonation with DBU. Heterobimetallic Fc-CC-NCN-Pt-CC-R (10a, R = bipy; 10b, R = C5H4N-4; Fc = (η5-C5H5)(η5-C5H4)Fe; NCN = [1,4-C6H2(CH2NMe2)2-2,6]) is accessible by the metathesis of Fc-CC-NCN-PtCl (9) with lithium acetylides LiCC-R (2a, R = bipy; 2b, R = C5H4N-4).The complexation behavior of 4a and 4b was investigated.Treatment of these molecules with [MnBr(CO)5] (13) and {[Ti](μ-σ,π-CCSiMe3)2}MX (15a, MX = Cu(NCMe)PF6; 15b, MX = Cu(NCMe)BF4; 16, MX = AgOClO3; [Ti] = (η5-C5H4SiMe3)2Ti), respectively, gave the heteromultimetallic transition metal complexes (η5- C5H5)L2Ru-CC-bipy[Mn(CO)3Br] (14a: L = PPh3; 14b: L2 = dppf) and [(η5-C5H5)L2Ru-CC-bipy{[Ti](μ-σ,π-CCSiMe3)2}M]X (17a: L = PPh3, M = Cu, X = BF4; 17b: L2 = dppf, M = Cu, X = PF6; 18a: L = PPh3, M = Ag, X = ClO4; 18b: L2 = dppf, M = Ag, X = ClO4) in which the appropriate transition metals are bridged by carbon-rich connectivities.The solid-state structures of 4b, 10b, 12 and 17b are reported. The main structural feature of 10b is the square-planar-surrounded platinum(II) ion and its linear arrangement. In complex 12 the N-atom of the pendant pyridine unit coordinates to a [mer,trans-(NNN)RuCl2] (NNN = 2,6-bis-[(dimethylamino)methyl]pyridine) complex fragment, resulting in a distorted octahedral environment at the Ru(II) centre. In 4b a 1,1′-bis(diphenylphosphino)ferrocene building block is coordinated to a cyclopentadienylruthenium-σ-acetylide fragment. Heterotetrametallic 17b contains a (η5-C5H5)(dppf)Ru-CC-bipy unit, the bipyridine entity of which is chelate-bonded to [{[Ti](μ-σ,π-CCSiMe3)2}Cu]+. Within this arrangement copper(I) is tetra-coordinated and hence, possesses a pseudo-tetrahedral coordination sphere.The electrochemical behavior of 4, 10b, 12, 17 and 18 is discussed. As typical for these molecules, reversible oxidation processes are found for the iron(II) and ruthenium(II) ions. The attachment of copper(I) or silver(I) building blocks at the bipyridine moiety as given in complexes 17 and 18 complicates the oxidation of ruthenium and consequently the reduction of the group-11 metals is made more difficult, indicating an interaction over the organic bridging units.The above described complexes add to the so far only less investigated class of compounds of heteromultimetallic carbon-rich transition metal compounds.  相似文献   

17.
A series of benzylideneanilines bearing terminal polyether chains, HL (HL = R-C6H4-CHN-C6H4-R′: R = OC8H17, R′ = O(CH2CH2O)2C2H5; R = O(CH2CH2O)2C2H5, R′ = OC8H17; R = R′ = O(CH2CH2O)2C2H5; R = OC12H25, R′ = O(CH2CH2O)3C2H5; R = O(CH2CH2O)3C2H5, R′ = OC12H25; R = R′ = O(CH2CH2O)3C2H5) have been prepared. Their dinuclear, [Pd(μ-X)L]2 (X = OAc, Cl, Br, SC8), [Pd2(μ-SCn)(μ-X)L2] (X = OAc, Cl; n = 8, 2) and mononuclear orthopalladated derivatives, Pd(acac)L, Pd(Ala)L, are reported and their mesogenic properties are compared with those of the analogous compounds with alkoxy chains. In general a great lowering in the melting points is produced for all the products. The free ligands and the alanine complexes are not liquid crystals. The chloro-bridged complexes bearing alkoxy and short polyether chains (O(CH2CH2O)2C2H5) show the larger improvement of mesogenic properties. Longer polyether chains (O(CH2CH2O)3C2H5) result usually in a destabilization of the mesophases. If only polyether chains are present, the destabilization is important regardless of the chain length. The ability of these molecules as ionic extractants and transporters was qualitatively evaluated for the more propitious cis-dinuclear complexes, which in fact showed some extracting ability, modest but improved compared to the free ligands.  相似文献   

18.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

19.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

20.
The syntheses of {Os(PPh3)2Cp}2{μ-(CC)x} (x = 2, 3, 4) from reactions between OsBr(PPh3)2Cp* and Me3Si(CC)xSiMe3 in the presence of KF/NaBPh4 are described. The molecular structure of x = 3 has been determined by a single-crystal XRD study. Comparison of the redox properties of {M(PPh3)2Cp}2{μ-(CC)x} (M = Ru, Os) shows that the oxidation potentials of the osmium complexes are invariably lower (by between 0.16 and 0.64 V) than those of the Ru analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号