首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The first one-dimensional (1-D) indiumphosphate chain, In2(HPO4)2(H2PO4)2F2·C4N2H12 (1), has been hydrothermally prepared using piperazine (PIP) as a template. The structure consists of infinite chains of trans,trans-corners-sharing InO4F2 octahedra with the adjacent octahedra being bridged by tetrahedral PO3(OH) and PO2(OH)2 units, which are H-bonded with amine groups of the organic cations. Interestingly, this macroanionic chain InP2O8H3F is similar to that found in the mineral tancoite-like chains and has potential to further set up higher-dimensional networks. On heating 1 in the presence of additional phosphoric acid at 180 °C under hydrothermal condition, compound 2, In2(OH)(H2O)(PO4)2·H3O·H2O, possessed a 3-D structure building from the repetition of a secondary building unit is obtained. When 1 is heated with additional PIP, an unknown phase, compound 3 is formed. Finally, on treatment with another amine, such as diethylenetriamine or 1,4-diaminobutane, at 180 °C, 1, as a precursor, can convert into a previously known 3-D framework structure with 16-membered ring compound 4. Compounds 1 and 2 are determined by single-crystal X-ray diffraction. Furthermore, 1 is characterized by X-ray powder diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis and differential thermal analysis.  相似文献   

2.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

3.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

4.
Two new niobium phosphates were synthesized and their crystal structures determined from single-crystal X-ray data. [NbOF(PO4)](N2C5H7) (1) (monoclinic, space group P21/c, a=11.442(1), b=9.1983(7), c=9.1696(8) Å, β=109.94(1)°) has a layered structure and is the first example of a negatively charged NbOF(PO4) layer analogous to the MO(H2O)PO4 (M=V, Nb) layers. The layer charge is compensated by interlayer 4-aminopyridnium cations that adopt an unusual arrangement as a consequence of H-bonding and π-π interactions. The interlayer aminopyridnium cations can be exchanged with alkylammonium ions which form bilayers inclined at ∼65° to the NbOF(PO4) layer. [(Nb0.9V1.1)O2(PO4)2(H2PO4)] (N2C2H10) (2) (orthorhombic, space group Pbca, a=15.821(2),b=9.0295(9),c=18.301(2) Å) has a disordered three-dimensional structure based on NbO(PO4) layers cross-linked by phosphate tetrahedra, and has a similar structure to the known vanadium analog [V2O2(PO4)2(H2PO4)] (N2C2H10).  相似文献   

5.
NMR study of the reactivity of multifunctional ligand cis,cis-C6H9(NHCH2C6H4-o-PPh2)3 (1) with GaMe3 and Zr(NMe2)4 was carried out, yielding [cis,cis-(κN-NHCH2C6H4-o-PPh2)(κN-NCH2C6H4-o-PPh2)2C6H9]GaMe (2) and [cis,cis-(NCH2C6H4-o-PPh2)3C6H9]Ga2Me3 (3), and [cis,cis-(NCH2C6H4-o-PPh2)3C6H9]Zr(NMe2) (4), respectively. The spectral properties of 2 and 3 are very similar to that observed for the equivalent aluminum species already reported, but form at a much slower rate which allows for the observation of a GaMe31 adduct. Species 4 undergoes coordination/displacement of one of the phosphine arms, which was observed using both NMR spectroscopy and DFT analyses.  相似文献   

6.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

7.
Reaction between Os(CO)2(PPh3)3 and 3,3-diphenylcyclopropene under quartz-halogen irradiation leads to C(sp2)-H bond activation and the formation of the 3,3-diphenylcyclopropenyl complex, OsH[C3H(Ph-2)2](CO)2(PPh3)2 (1). When complex 1 is heated there is ring-opening of the cyclopropene ring and rearrangement to the 3-phenylindenyl complex, OsH[C9H6(Ph-3)](CO)2(PPh3)2 (2). Compound 1 reacts with HCl forming the 2,2-diphenylcyclopropyl complex, OsCl[C3H3(Ph-2)2](CO)2(PPh3)2 (3). Reaction of either 1 or 3 with excess HCl leads to reversible formation of the hydroxycarbene complex, OsCl2[C(OH)C3H3(Ph-2)2](CO)(PPh3)2 (4), through protonation of the acyl group formed by a migratory insertion reaction involving a carbonyl ligand and the σ-bound 2,2-diphenylcyclopropanyl ligand. An X-ray crystal structure determination of 2 is reported.  相似文献   

8.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

9.
The hybrid 2D compound [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1), has been investigated due to its interesting magnetic and catalytic properties. Compound (1) acts as an efficient catalyst in the epoxidation of cyclohexene and styrene. The chemoselectivity towards the epoxidation of cyclohexene is notoriously higher than the one observed towards styrene. The bulk antiferromagnetic behaviour of [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1) can be well described with a pentanuclear model, using five J values. Both antiferromagnetic and ferromagnetic interactions mediated by phosphate bridges are found to be present in this hybrid copper(II)–vanadium(IV) material.  相似文献   

10.
Two new hydrazinium lanthanide(III) oxalates, (N2H5)[Nd(C2O4)2(H2O)]·4H2O (1) and (N2H5)[Gd(C2O4)2(H2O)]·4.5H2O (2) have been prepared and their crystal structures determined by single-crystal X-ray diffraction. The crystal structures were solved by the direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. Crystallographic data: 1, triclinic, space group , , b=9.762(4), , α=62.378(5), β=76.681(5), γ=73.858(5), Z=2, R1=0.0335 for 172 parameters with 3430 reflections with I?2σ(I); 2, triclinic, space group , , b=9.51(3), , α=62.11(4), β=76.15(5), γ=73.73(5), Z=2, R1=0.0325 for 172 parameters with 1742 reflections with I?2σ(I). The two isotypic structures are built from a three-dimensional (3D) arrangement of lanthanide and oxalate ions. The lanthanide atom is coordinated by eight oxygen atoms from four tetradentate oxalate ions and one aqua oxygen. Alternating lanthanide and oxalate ions form six-membered rings that delimit tunnels running down three directions and occupied by hydrazinium and water molecules. Starting from these lanthanide(III) compounds two isotypic mixed Ln(III)/U(IV) oxalates, (N2H5)0.75[Nd0.75U0.25(C2O4)2(H2O)]·4.5H2O (3) and (N2H5)0.75[Gd0.75U0.25(C2O4)2(H2O)]·4H2O (4), are obtained by partial substitution of Ln(III) by U(IV) in the nine-coordinated site, the charge excess being compensated by removal of monovalent ions from the tunnels. Finally, using Na+ gel, two mixed Ln(III)/U(IV) sodium oxalates, Na0.5[Nd0.5U0.5(C2O4)2(H2O)]·3H2O (5) and Na0.65[Gd0.65U0.35(C2O4)2(H2O)]·4.5H2O (6) have been obtained without any change in the 3D framework.  相似文献   

11.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

12.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

13.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

14.
Using tris(2-aminoethyl)amine [(C2H4NH2)3N] (tren) as a template, two new tantalum fluorides are obtained by slow evaporation of solutions: [H4tren](TaF7)2·H2O (I) and [H4tren](TaF7)2 (II). The structure determinations are performed by single crystal X-ray technique. Structures of I and II are built up from isolated TaF7 distorted monocapped trigonal prisms or pentagonal bipyramids; charge balance is achieved by tetraprotonated [H4tren]4+ cations which possess a “scorpion” configuration. In I and II, TaF7 polyhedra, connected by hydrogen bonds with water molecules in I, lie in corrugated layers; hydrogen bond networks ensure the cohesion between these layers and [H4tren]4+cations.  相似文献   

15.
Single crystals of two cerium complexes, with mixed-ligands oxalate and glycolate, have been prepared in a closed system, at 200 °C for one month: [Ce2(H2O)3](C2O4)2.5(H3C2O3) 1 and Ce2(C2O4)(H3C2O3)42. 1 crystallizes in the orthorhombic system, space group Pbca, with , , and while 2 crystallizes in the tetragonal system, space group P42/nbc, with , . For both complexes, the three-dimensional framework structure is built up by the linkages of the cerium and all the oxygen atoms of oxalate and glycolate ligands. For 2, its structure presents a nice case of two 3D identical sub-lattices, with 2-fold interpenetration. The only link between these two sub-lattices is assumed by strong hydrogen bonds between the hydroxyl function of the glycolate and the oxygen atoms of the oxalate. The schematized framework of 2, including only the cerium atoms, can be compared to that of cooperite (PtS).For 1, the two independent cerium have 9- or 10-fold coordination, forming a distorted monocapped or bicapped square antiprism polyhedron while for 2, the two independent cerium present 8-fold coordination, forming an almost regular dodecahedron. A quite relevant feature of 2 is the complete absence of water. 2 has been extended to other lanthanides (Ln=Ce…Lu, yttrium included) leading to a family, which has been characterized by infra-red and thermal analysis.  相似文献   

16.
Compound trans-PtBr2(C2H4)(NHEt2) (1) has been synthesized by Et2NH addition to K[PtBr3(C2H4)] and structurally characterized. Its isomer cis-PtBr2(C2H4)(NHEt2) (3) has been obtained from 1 by photolytic dissociation of ethylene, generating the dinuclear trans-[PtBr2(NHEt2)]2 intermediate (2), followed by thermal re-addition of C2H4, but only in low yields. The addition of further Et2NH to 1 in either dichloromethane or acetone yields the zwitterionic complex trans-Pt(−)Br2(NHEt2)(CH2CH2N(+)HEt2) (4) within the time of mixing in an equilibrated process, which shifts toward the product at lower temperatures (ΔH° = −6.8 ± 0.5 kcal/mol, ΔS° = 14.0 ± 2.0 e.u., from a variable temperature IR study). 1H NMR shows that free Et2NH exchanges rapidly with H-bonded amine in a 4·NHEt2 adduct, slowly with the coordinated Et2NH in 1, and not at all (on the NMR time scale) with Pt-NHEt2 or -CH2CH2N(+)HEt2 in 4. No evidence was obtained for deprotonation of 4 to yield an aminoethyl derivative trans-[PtBr2(NHEt2)(CH2CH2NEt2)] (5), except as an intermediate in the averaging of the diasteretopic methylene protons of the CH2CH2N(+)HEt2 ligand of 4 in the higher polarity acetone solvent. Computational work by DFT attributes this phenomenon to more facile ion pair dissociation of 5·Et2NH2+, obtained from 4·Et2NH, facilitating inversion at the N atom. Complex 4 is the sole observable product initially but slow decomposition occurs in both solvents, though in different ways, without observable generation of NEt3. Addition of TfOH to equilibrated solutions of 4, 1 and excess Et2NH leads to partial protonolysis to yield NEt3 but also regenerates 1 through a shift of the equilibrium via protonation of free Et2NH. The DFT calculations reveal also a more favourable coordination (stronger Pt-N bond) of Et2NH relative to PhNH2 to the PtII center, but the barriers of the nucleophilic additions of Et2NH to the C2H4 ligand in 1 and of PhNH2 to trans-PtBr2(C2H4)(PhNH2) (1a) are predicted to be essentially identical for the two systems.  相似文献   

17.
The reaction between BaI2 · 2H2O and NaHFIP [HFIP = OCH(CF3)2] in a 1:1 stoichiometry gave the heterometallic compound NaBaI2(HFIP)(H2O)(THF)0.5 (1). Attempts to recrystallize 1 in the presence of N- or O-donor ligands lead to redistribution reactions. Barium iodide adducts such as BaI2(DME)3 (2), trans-BaI2(DME)(triglyme) (3) and cis-BaI2(DME)(tetraglyme) (4) were isolated with DME as solvent. A similar behavior was observed for the reaction between BaI2 · 2H2O and NaTFA (TFA = O2CCF3) in a 1:1 stoichiometry in THF, and [Ba(tetraglyme)2]I2 · C7H8 (6) was isolated in the presence of excess tetraglyme. All compounds have been characterized by elemental analysis, IR and 1H NMR as well as single crystal X-ray studies for 3, 4 and 6. Compounds 3 and 4 are covalent adducts with eight- and nine-coordinate barium, respectively. Compound 6 is an ionic compound where two tetraglyme ligands wrap the 10-coordinate barium cation in a helical fashion. The presence of DME actually allows the coordination number of barium in the mixed-ligand adducts 3 and 4 to be tuned. The average Ba–O bond lengths (2.80 for 3 to 2.87 Å for 6) reflect the coordination number of the metal. The same observation is valid for the average Ba–I bond distance, 3.442 for 3 vs. 3.536 Å for 4.  相似文献   

18.
A new ammonium uranium (IV) oxalate (NH4)2U2(C2O4)5·0.7H2O (1) and three mixed uranium (IV)-lanthanide (III) oxalates, (N2H5)2.6U1.4M0.6(C2O4)5·xH2O (M=Nd (2) and M=Sm (3)), Na2.56U1.44Nd0.56(C2O4)5·7.6H2O (4) and Na3UCe(C2O4)5·10.4H2O (5), have been prepared. The crystal structures of compounds 1, 4 and 5 have been determined by single-crystal X-ray diffraction. The crystal structures were solved by the direct methods and Fourier difference techniques, and refined by a least square method on the basis of F2 for all unique reflections. Compounds 2 and 3 are isotypic with 1. Crystallographic data: 1, hexagonal, space group P63/mmc, a=19.177(3), c=12.728(4) Å, Z=6, R1=0.0575 for 52 parameters with 1360 reflections with I?2σ(I); 2, hexagonal, space group P63/mmc, a=19.243(4), c=12.760(5) Å, Z=6; 3, hexagonal, space group P63/mmc, a=19.211(3), c=12.274(4) Å, Z=6; 4, orthorhombic, space group Pbcn, a=18.79(3), b=11.46(1), c=12.77(2) Å, Z=4, R1=0.0511 for 183 parameters with 3026 reflections with I?2σ(I); 5, monoclinic, space group C2/c, a=18.878(6), b=11.684(4), c=12.932(4) Å, β=95.97(1)°, Z=4, R1=0.0416 for 213 parameters with 4060 reflections with I?2σ(I). The honeycomb-like structure of the five compounds is built from the same three-dimensional arrangement of metallic and oxalate ions. Similar hexagonal rings of alternating metallic and oxalate ions form layers parallel to the (001) plane that are pillared by another oxalate ion. Indeed, some torsions or rotations of the bridging oxalate ligands led to modifications of the network symmetry. The monovalent cations and the water molecules occupy the hexagonal tunnels running down the [001] direction. Starting from the uranium (IV) compound A2U2(C2O4)5·0.7H2O with A=NH4+ (1), the mixed U(IV)/Ln(III) oxalates are obtained by partial substitution of U(IV) by Ln(III) in a ten-coordinated site, the charge deficit being compensated by intercalation of supplementary monovalent ions within the tunnels. The distortion of the arrangement in the [001] direction for the Na-containing compounds allows the accommodation of a greater number of water molecules that insure an octahedral coordination of the Na atoms.  相似文献   

19.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

20.
The complexes [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] (1) (Hpz = pyrazole), [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] (2), [ReCl2(HCpz3)(PPh3)][BF4] (3) and [ReCl2(3,5-Me2Hpz)3(PPh3)]Cl (4) were obtained by treatment of the chelate [ReCl22-N,O-N2C(O)Ph}(PPh3)2] (0) with hydrotris(1-pyrazolyl)methane HCpz3 (1,3), pyrazole Hpz (1,2), hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me2pz)3 (4) or dimethylpyrazole 3,5-Me2Hpz (4). Rupture of a C(sp3)-N bond in HCpz3 or HC(3,5-Me2pz)3, promoted by the Re centre, has occurred in the formation of 1 or 4, respectively. All compounds have been characterized by elemental analyses, IR and NMR spectroscopy, FAB-MS spectrometry, cyclic voltammetry and, for 1 · CH2Cl2 and 3, also by single crystal X-ray analysis. The electrochemical EL Lever parameter has been estimated, for the first time, for the HCpz3 and the benzoyldiazenide NNC(O)Ph ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号