首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of Bi0.7Yb1.3WO6 (a representative of the isomorphous series Bi2−xLnxWO6; 0.3<x<1.3, for most lanthanides) has been determined. Contrary to previous suggestions, this structure type (space group A2; a=8.1070(3) Å, b=3.7048(2) Å, c=15.8379(8) Å, β=103.548(4)°) contains layers of stoichiometry WO4, containing WO6 octahedra sharing both edges and corners. These layers alternate with fluorite-like (Bi/Yb)2O2 sheets; this is a novel and unexpected arrangement and contrasts dramatically with the purely corner-sharing octahedral WO4-layer in the parent Aurivillius phase Bi2WO6.  相似文献   

2.
Bi2O3-MoO3 system shows a large panoply of phases depending on Bi/Mo ratio, among them, the low temperature phases of the homologous series Bi2(n+2)MonO6(n+1) with n=3, 4, 5 and 6. They exhibit, alike most of the phases of this system, strong fluorite sub-network. Nevertheless, a multitechnique approach has been followed in order to solve the crystal structure of the n=3 member, i.e. Bi10Mo3O24. From ab initio indexing X-ray powder pattern cell parameters were derived. It belongs to the monoclinic system, space group C2, with cell parameters: a=23.7282(2) Å, b=5.64906(6) Å, c=8.68173(9) Å, β=95.8668(7)° with Z=2. The matrix relating this cell with the fluorite one is 4 0 1/0 1 0/ 0  and a cationic localization was derived. HRTEM allowed the cationic Bi and Mo order to be modified and specified, as well as to build up a full structural ab initio model on the basis of crystal chemistry considerations. Simultaneous Rietveld refinement of multipattern X-ray and neutron powder diffraction data taking advantage of the neutron scattering length for O location have been performed. The goodness of the model was ascertained by low reliability factors, weighted Rb=4.97% and Rf=3.21%. This complex Bi10Mo3O24 structure, with 5Bi, 2Mo and 13O in different crystallographic positions of the asymmetric unit, shows good agreement between observed and calculated patterns within the data resolution. Moreover, the determination of this structure sets the basis for the crystallographic characterization of the complete family Bi2(n+2)MonO6(n+1), whose guidelines are also evidenced in this paper.  相似文献   

3.
Structures of the double perovskites Ba2Sr1−xCaxWO6 have been studied by the profile analysis of X-ray diffraction data. The end members, Ba2SrWO6 and Ba2CaWO6, have the space group I2/m (tilt system a0bb) and Fmm (tilt system a0a0a0), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3¯ phase (tilt system aaa) instead of the tetragonal I4/m phase (tilt system a0a0c). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba2MM′O6-type double perovskites, and disagrees with a recent proposal that the formation of the π-bonding, e.g., d0-ion, determines the tetragonal symmetry in preference to the rhombohedral one.  相似文献   

4.
New ternary antimonide Dy3Cu20+xSb11−x (x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, CuKα-radiation, RI=6.99%,Rp=12.27%,Rwp=11.55%). The compound crystallizes with the own cubic structure type: space group , Pearson code cF272, . The structure of the Dy3Cu20Sb11−x (x≈2) can be obtained from the structure type BaHg11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.  相似文献   

5.
The crystal structure of the Aurivillius phase Bi5TiNbWO15 has been analyzed in detail using powder X-ray and neutron diffraction. The structure can be described as a regular intergrowth of alternating single and double perovskite-like layers sandwiched between fluorite-like bismuth oxide layers, such that the layer sequence is … [WO4]-[Bi2O2]-[BiTiNbO7]-[Bi2O2] …. There is complete ordering of tungsten within the B sites of the single perovskite layer, so that the structure can be described as a direct intergrowth of the ‘component’ Aurivillius phases Bi2WO6 and Bi3TiNbO9. At 25 °C the structure adopts the polar orthorhombic space group I2cm, , , .  相似文献   

6.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   

7.
Single crystals of a new bismuth chromate, Bi8(CrO4)O11, were prepared by hydrothermal reaction of NaBiO3·nH2O in K2CrO4 solution. The bismuth chromate crystallizes in the monoclinic space group P21/m with a=9.657(3), b=11.934(3), c=13.868(2)Å and β=104.14(1)°, Z=4 and the final R factors are R=0.038 and Rw=0.041 for 3541 unique reflections. The crystal structure has a slab built up by (CrO4)2− tetrahedra and distorted bismuth polyhedra which are five-fold pyramids, six-fold trigonal prisms and octahedra. The distance of lone pair from nucleus for bismuth atoms ranges from 0.29 to 1.12 Å, depending on the coordination environment. Bi8(CrO4)O11 decomposes to Bi14CrO24 and a small amount of an unknown phase at 796 °C.  相似文献   

8.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques derived from thermogravimetric measurements, we have extended the solubility limit of random substitution of Ga3+ for Mn in the cubic perovskite phase to x=0.5. In the cubic perovskite phase the maximum oxygen content is close to 3−x/2, which corresponds to 100% Mn4+. Maximally oxygenated solid solution compounds are found to order antiferromagnetically for x=0-0.4, with the transition temperature linearly decreasing as Ga content increases. Increasing the Ga content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.5Ga0.5O2.67(3) below 12 K. These properties are markedly different from the long-range antiferromagnetic order below 180 K observed for the layer-ordered compound Sr2MnGaO5.50 with nominally identical chemical composition.  相似文献   

9.
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonalI4/m space group witha = 3.839 (1) ?,c = 16.382 (5) ?,V = 241.4 (1) ?3,Z = 4 and was refined to anR index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2]2+ units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10−5 Scm−1 at 600°C. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

10.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

11.
Compounds in the solid solution series Ca1−xNaxTi1−xTaxO3 were synthesized at 1300 °C, followed by annealing at 850 °C or 800 °C with quenching and/or slow cooling to room temperature. Rietveld refinement of their powder X-ray diffraction patterns show that all compounds are single-phase ternary perovskites which adopt the space group Pbnm (a≈b≈√2ap; c≈2ap; Z=4) at ambient conditions. The unit cell parameters and cell volumes of the compounds increase regularly with increasing values of x. The coordination of the A-site cations changes throughout the series from eight for CaTiO3 to nine for NaTaO3. Compounds with 0?x ?0.4 have A-site cations in eight fold coordination, whereas the coordination of those with 0.4<x<0.9 is ambiguous. Analysis of the crystal chemistry of the compounds shows that the change in coordination at x=0.4 is related to the departure of the B-site cations from the second coordination sphere of the A-site cations, as in compounds with x>0.4 the A-IIO distances become less than the A-B intercation distances. Contemporaneous with these coordination changes, the tilt angles of the BO6 polyhedra decrease with increasing values of x. This solid solution series is unusual in that these structural and coordination changes occur regardless that Goldschmidt tolerance factors remain essentially constant at approximately 0.89, and observed tolerance factors, assuming eight fold coordination of the A-site cations, range only from 0.91 to 0.93 (0?x?0.8).  相似文献   

12.
The effect of Fe doping on the ferromagnetic Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075, 0.1) phases has been studied in order to analyze the double-exchange interaction. The structural and magnetic study has been carried out by neutron powder diffraction and susceptibility measurements between 1.7 and 300 K. The substitution of Fe at the Mn site results in reductions in both the Curie temperature Tc and the magnetic moment per Mn ion without appreciable differences in the crystal structures. All the compounds crystallize in Pnma space group. The thermal evolution of the lattice parameters of the Nd0.7Pb0.3Mn1−xFexO3 (x=0.025, 0.05, 0.075) compounds shows discontinuities in volume and lattice parameters close to the magnetic transition temperature. Increasing amounts of Fe3+ reduces the double exchange interactions and no magnetic contribution for x=0.1 is observed. The magnetic structures of Nd0.7Pb0.3Mn1−xFexO3 (x=0, 0.025, 0.05, 0.075) compounds show that the Nd and Mn ions are ferromagnetically ordered.  相似文献   

13.
The orthorhombic-tetragonal phase transition in the perovskite series Sr1−xCaxMnO3 0.4?x?0.6 has been studied by synchrotron X-ray powder diffraction. At room temperature the Ca rich oxides x?0.45 have the orthorhombic Pbnm superstructure whereas Sr0.6Ca0.4MnO3 is two phases with both tetragonal I4/mcm and orthorhombic Pbnm. Analysis of the octahedral tilts suggest the co-existence of these two phases is a consequence of a first-order I4/mcm to Pbnm transition. The evolution of the structure of Sr0.5Ca0.5MnO3 with temperature is also described and this is found to evolve from orthorhombic to tetragonal and ultimately cubic.  相似文献   

14.
The local structure of In2O3 cosubstituted with Zn and Sn (In2−2xSnxZnxO3, x≤0.4 or ZITO) was determined by extended X-ray absorption fine structure (EXAFS) for x=0.1, 0.2, 0.3 and 0.4. The host bixbyite In2O3 structure is maintained up to the enhanced substitution limit (x=0.4). The EXAFS spectra are consistent with random substitution of In by the smaller Zn and Sn cations, a result that is consistent with the “good-to-excellent” conductivities reported for ZITO.  相似文献   

15.
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO2 in UO2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr0.33U0.67O2.33 (ZrU2O7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U4+ and U6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU2O7 are also studied using thermogravimetry.  相似文献   

16.
The compounds Bi6+xT1−xP2O15+y, T=Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn and Pb display five polymorphic forms. Polymorph A is formed by the Ti, Mn, Fe and Ni phases. Polymorph B is exhibited by Co and Cu compounds. The Cr phase crystallizes as polymorphic form C and the Zn phase crystallizes as polymorph D. The Pb compound crystallizes in a new structure type designated as polymorph E. The transition metal crystal structures demonstrate a similar motive. OBi4 tetrahedra share edges to form two-dimensional Bi2O2 layers that are spanned by PO4 tetrahedra and TO6−y octahedra, pyramids and a trigonal bipyramid to form a three-dimensional network. Polymorph A crystallizes in space group C2; polymorph B is centrosymmetric with space group C2/c, the unit cell parameters differ and the unit cell volume is about double. Polymorph C crystallizes in space group and polymorph D exhibits space group C2. Bi6.4Pb0.6P2O15.2 can be considered as polymorph E, space group C2, with a new crystal structure but related stoichiometry.  相似文献   

17.
Single crystals of Zn1−xSbxCr2−x/3Se4 based on the ZnCr2Se4 spinel, which is known to exhibit interesting magnetic and electronic transport properties, have been prepared by solid state reaction from the appropriate selenides. Three compounds of different Sb content (x=0.11, 0.16, and 0.20) were studied by X-ray diffraction, X-ray photoelectron scattering technique and macroscopic magnetic measurements with the aim to determine (i) stability of the cubic symmetry and (ii) influence of the Sb admixture on the magnetic properties. The results show that the Sb3+ and Zn2+ ions share the tetrahedral sites in the spinel structure, while the Cr3+ions carrying magnetic moments, are located in the octahedral sites. The X-ray photoelectron spectroscopy (XPS) data indicate that in this series of compounds the chromium ions have a 3d3 electronic configuration. The three samples studied order antiferromagnetically at low temperatures, with the magnetic characteristics being hardly altered with respect to those reported for the parent ZnCr2Se4 compound.  相似文献   

18.
Single crystals of KxMg(8+x)/3Sb(16−x)/3O16 (x≈1.76) with a hollandite superstructure were grown. Ordering schemes for guest ions (K) and the host structure were confirmed by the structure refinement using X-ray diffraction intensities. The space group is I4/m and cell parameters are a=10.3256(6), c=9.2526(17)Å with Z=3. Superlattice formation is primarily attributed to the Mg/Sb occupational modulation in the host structure. Mg/Sb ratios at two nonequivalent metal sites are 0.8977/0.1023 and 0.1612/0.8388. Two types of the cavity are seen in the tunnel, where parts of K ions deviate from the cavity center along the tunnel direction. Probability densities for K ions in the two cavities are different from each other, which seems to have arisen from the Mg/Sb modulation.  相似文献   

19.
Crystals of Ba5Fe5−xPtxClO13 and Ba5Co5−yPtyClO13 were prepared for x=1.31, 1.51, 1.57, 1.59 and y=0, 0.97 and 1.08 in a BaCl2 flux and investigated by X-ray diffraction methods. These compounds adopt a 10H perovskite structure built from the stacking of BaO3 and BaOCl layers in the sequence (BaO3)4(BaOCl) with space group P63/mmc. The cation sites within the trimeric unit of face-sharing octahedra are occupied by Co or Fe and Pt ions, while the tetrahedral sites formed between BaO3 and BaOCl layers are only occupied by Fe or Co. Moreover, oxygen stoichiometry indicates an average oxidation state for Co and Fe higher than +III, indicating the stabilization of Co4+ and Fe4+.  相似文献   

20.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号