首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

2.
Granular Ag-added La0.7Ca0.3MnO3 (LCMO) samples were prepared by a sol-gel chemical route. Significant enhancements in Curie temperature (TC), metal−insulator transition (Tp) and magnetoresistance (MR) effects near room temperature are observed in as-obtained samples. 10 wt% addition of Ag in LCMO causes TC shift from 272 to 290 K, Tp boost up for more than 100 K and resistivity decrease by more than 3 orders of magnitude. X-ray diffraction patterns, thermal analysis and energy dispersive analysis of X-rays evidently show the existence of metal silver in LCMO matrices. High-resolution electron microscopy illustrates a well crystallization for LCMO grains in existence of Ag. It is argued that improved grain boundary effect and better crystallization caused by Ag addition are responsible for the enhancements.  相似文献   

3.
Using Na2CO3-H3BO3-NaF as fluxes, transparent RE:Na3La9O3(BO3)8 (abbr. RE:NLBO, RE=Er, Yb) crystals have been grown by the top seed solution growth (TSSG) method. The X-ray powder diffraction analysis shows that the RE:NLBO crystals have the same structure with NLBO. The element contents were determined by molar to be 0.64% Er3+ in Er:NLBO, 2.70% Yb3+ in Yb:NLBO, respectively. The polarized absorption spectra of RE:NLBO have been measured at room temperature and show that both Er:NLBO and Yb:NLBO have a strong absorption bands near 980 nm with wide FWHM (Full Wave at Half Maximum) (21 nm for Er:NLBO and 25 nm for Yb:NLBO). Fluorescence spectra have been recorded. Yb:NLBO has the emission peaks at 985 nm, 1028 nm and 1079 nm and the emission peak of Er:NLBO is at 1536 nm. Spectral parameters have been calculated by the Judd-Ofelt theory for Er:NLBO and the reciprocity method for Yb:NLBO, respectively. The calculated values show that Er:NLBO is a candidate of 1.55 μm laser crystals and Yb:NLBO is a candidate for self-frequency doubling crystal.  相似文献   

4.
The results of the X-ray structural study for the K4LiH3(SO4)4 single crystal are presented at a wide temperature range. The thermal expansion of the crystal using the X-ray dilatometry and the capacitance dilatometry from 8 to 500 K was carried out. The crystal structures data collection, solution and refinement at 125, 295, 443 and 480 K were performed. The K4LiH3(SO4)4 crystal has tetragonal symmetry with the P41 space group (Z=4) at room temperature as well as at the considered temperature range. The existence of a low-temperature, para-ferroelastic phase transition at about 120 K is excluded. The layered structure of the crystal reflects a cleavage plane parallel to (001) and an anisotropy of the protonic conductivity. The superionic high-temperature phase transition at TS=425 K is isostructural. Nevertheless, taking into account an increase of the SO4 tetrahedra libration above TS, a mechanism of the Grotthus type could be applied for the proton transport explanation.  相似文献   

5.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   

6.
Some NiO-doped Bi2O3,La2O3-SrO-BaO-Nb2O5-B2O3 glasses giving the formation of strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 °C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 μm/s in 2NiO-4La2O3-16SrO-16BaO-32Nb2O5-30B2O3 glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni2+ ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.  相似文献   

7.
Titanium-doped single crystals (cTi=0-2×1020 atoms cm−3) were prepared from the elements Sb, Ti, and Te of 5 N purity by a modified Bridgman method. The obtained crystals were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of 3-300 K. It was observed that with an increasing Ti content in the samples the electrical resistivity, the Hall coefficient and the Seebeck coefficient increase. This means that the incorporation of Ti atoms into the Sb2Te3 crystal structure results in a decrease in the concentration of holes in the doped crystals. For the explanation of the observed effect a model of defects in the crystals is proposed. The data of the lattice thermal conductivity were fitted well assuming that phonons scatter on boundaries, point defects, charge carriers, and other phonons.  相似文献   

8.
Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 °C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with TN=8.8(1) K and CeAu4Si2 features a ferromagnetic component below Tc=3.3(1) K. Both phases have effective moments close in value to that of free Ce3+.  相似文献   

9.
Oxyfluoride glasses with a small amount of NiO are prepared using a conventional melt quenching technique, and the spatially selected crystallization of LaF3 and CaF2 crystals is induced on the glass surface by irradiations of continuous wave lasers with a wavelength of λ=1064 or 1080 nm. Dots and lines including LaF3 crystals are patterned by heat-assisted (300 °C) laser irradiations (λ=1064 nm) with a power of P=1 W and an irradiation time of 10 s for dots and a scanning speed of S=5 μm/s for lines. Lines consisting of CaF2 crystals are also patterned in an ErF3-doped oxyfluoride glass by laser irradiations (λ=1080 nm) with a power of P=1.7 W and a scanning speed of S=2 μm/s, and the incorporation of Er3+ ions into CaF2 crystals is confirmed from micro-photoluminescence spectrum measurements. It is proposed that the lines patterned by laser irradiations in this study are consisted of the composite of LaF3 or CaF2 nanocrystals and SiO2-based oxide glassy phase. It is demonstrated that a combination of Ni2+-dopings and laser irradiations is effective in spatially selected local crystallizations of fluorides in oxyfluoride glasses.  相似文献   

10.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

11.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

12.
Highly crystalline phenyl 2,5-dichlorobenzenesulfonate (PDBS, Tmelt = 86-87 °C) and pentafluorophenyl 2,5-dichlorobenzenesulfonate (FPDBS, Tmelt = 120-122 °C) were synthesized. Single-crystal X-ray molecular structure determinations show that both compounds have similar three-dimensional molecular structures; however, PDBS crystals are thin platelets and FPDBS crystals form hexagonal tube-like structures that are predominately hollow at one end. PDBS crystals exhibit offset π-stacking of the phenoxy-rings that form complete two-dimensional layers each two molecules thick. Hydrogen-bonding interactions are calculated at ∼3.2 Å between the C6-hydrogen and the sulfonyl-oxygen of a neighboring molecule. On the other hand, for FPDBS, π-stacking of the dichloro-substituted ring as well as dipole-dipole interactions of the fluorinated-phenoxy rings appears to be the predominate intermolecular interactions. Neither structure exhibits any kind of side-on interaction of the phenyl rings. PDBS and FPDBS exhibit melting point depressions of 26 and 40 °C, respectively, in the presence of supercritical CO2. Although both sulfonates exhibit high solubility in CO2, much lower pressures are needed to dissolve FPDBS compared to PDBS. For example, at 100 °C FPDBS dissolves at 4750 psia and PDBS dissolves at 11,000 psia. The solubility data reinforce the observation that fluorinating a compound can significantly lower the conditions needed to dissolve that compound in CO2.  相似文献   

13.
The effect of B2O3 addition on the crystallization of amorphous TiO2-ZrO2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO2-ZrO2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO2-ZrO2 into a crystalline ZrTiO4 compound, while a larger amount of boria (?8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO4 units delay, while a build-up of trigonal BO3 promote, the crystallization of amorphous TiO2-ZrO2 to form ZrTiO4 crystals.  相似文献   

14.
Syntheses, structural and compositional analyses of the filled cubic Ti2Ni-type phase in Zr-Pt-O system have been studied, largely for the platinum-richer compositions. Diffraction quality crystals were grown by annealing an arc-melted composition Zr4Pt2O0.66 at 1600 °C under Ar. The refined composition Zr4.0Pt1.95(1)O0.93(6) (a=12.5063(6) Å, , Z=16) is close to the idealized composition Zr4Pt2O known in several other Zr-T-O systems (T=late 4d or 5d transition element). (This composition has been erroneously reported by ICDD for years as Zr6Pt3O (No. 00-017-0557) and referred to as ε-Zr6Pt3O.) The product is only marginally poor in platinum and oxygen, in contrast to the 1960 reports of metallographic studies (∼Zr4Pt1.62O0.44). Under arc-melting conditions, high yields of the cubic phase are obtained from samples with lower platinum concentrations (Zr4Pt1.74O1.04), whereas samples near the refined cubic composition contain hexagonal Zr5Pt3Ox as well (Mn5Si3-type). The hexagonal structure of binary Zr5Pt3 was also refined (Mn5Si3 type, P63/mcm, a=8.210(1) Å, c=5.385(2) Å) and shown to be non-stoichiometric to at least Zr5Pt2.5.  相似文献   

15.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

16.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

17.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

18.
The areas of the fusion and crystallization peaks of K3TaF8 and K3TaOF6 have been measured using the DSC mode of the high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities and the temperature dependence of the used calorimetric method sensitivity, the values of the enthalpy of fusion of K3TaF8 at temperature of fusion 1039 K: ΔfusHm(K3TaF8; 1039 K) = (52 ± 2) kJ mol−1 and of K3TaOF6 at temperature of fusion 1055 K: ΔfusHm(K3TaOF6; 1055 K) = (62 ± 3) kJ mol−1 have been determined.  相似文献   

19.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

20.
The magnetic properties and the magnetocaloric effect are presented for the perovskite-related oxide SrFe0.5Co0.5O3 prepared using electrochemical oxidation. SrFe0.5Co0.5O3 exhibits a second order paramagnetic-ferromagnetic transition close to room temperature (TC=330 K). The maximal magnetic entropy change ΔSMMax , the maximal adiabatic temperature change ΔTad and the refrigerant capacity are found to be equal to respectively 4.0 J/kgK, 1.8 K and 258 J/kg while raising the B-field change from 0 to 5 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号