首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of Bi0.7Yb1.3WO6 (a representative of the isomorphous series Bi2−xLnxWO6; 0.3<x<1.3, for most lanthanides) has been determined. Contrary to previous suggestions, this structure type (space group A2; a=8.1070(3) Å, b=3.7048(2) Å, c=15.8379(8) Å, β=103.548(4)°) contains layers of stoichiometry WO4, containing WO6 octahedra sharing both edges and corners. These layers alternate with fluorite-like (Bi/Yb)2O2 sheets; this is a novel and unexpected arrangement and contrasts dramatically with the purely corner-sharing octahedral WO4-layer in the parent Aurivillius phase Bi2WO6.  相似文献   

2.
The vibrational spectra of compounds Ln2WO6 and Ln2MoO6 (Ln = lanthanide, including Y and Bi) are reported. Neglecting details it is possible to assign the internal vibrations of the molybdate and tungstate group. The results are in agreement with the structural data known up till now and suggest further that tungsten in the unknown Y2WO6 structure is in six-coordination, that Bi2MoO6 shows still another modification than koechlinite and that vibrational spectroscopy may yield additional structural information for compounds like those under consideration.  相似文献   

3.
An outline of the structure of a continuous solid-solution series Bi2?xLaxWO6 with x = 0.4–1.1 (space group P2/c and Z = 8) has been determined from a lattice imaging method of electron microscopy. A high-resolution lattice image of Bi1.4La0.6WO6 selected as representative of the series showed that the structure consists of a regular stacking of Bi1.4La0.6O2 layers interleaved with WO4 layers. A structural model of Bi2?xLaxWO6 was proposed and atomic coordinates were estimated on the basis of the model. The structural relations between Bi2?xLaxWO6 and Bi2WO6 were discussed.  相似文献   

4.
Oxy-silicate and oxy-germanate, Ln2(TO4)O (Ln=La and Nd, T=Ge and Si) compounds have been prepared. Oxy-germanates can be readily obtained as highly crystalline single phases, while, the oxy-silicates are difficult to prepare as pure phases. The crystal structure of Nd2(SiO4)O has been studied from a joint Rietveld refinement of neutron and laboratory X-ray powder diffraction data. The electrochemical characterisation indicates that these compounds display oxide anion conductivity with p-type electronic contribution under oxidising conditions. The apparent activation energies under dry flowing nitrogen, where p-type contribution is minimised, are 0.97(1), 1.05(3) and 1.17(4) eV, for Nd2(SiO4)O, La2(GeO4)O and Nd2(GeO4)O, respectively. The overall conductivities at 1173 K range from 1.2×10−4 S cm−1 for Nd2(SiO4)O to 1.3×10−6 S cm−1 for La2(GeO4)O. Finally, the stability of these compounds under very reducing conditions has been studied and partial degradation is reported.  相似文献   

5.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

6.
采用简单沉积-沉淀法合成了Bi2WO6@Bi2MoO6-xF2x(BWO/BMO6-xF2x)异质结,借助XRD、XPS、TEM、SEM、EDS、UV-Vis-DRS、PC和EIS等测试技术对其组成、形貌、光吸收特性和光电化学性能等进行系统表征,并以模型污染物罗丹明B(RhB)的光催化降解作为探针反应来评价Bi2WO6@Bi2MoO6-xF2x异质结的光催化活性增强机制。形貌分析表明,所得Bi2MoO6微球由大量厚度为20~50 nm的纳米片组成;FE-SEM和HR-TEM分析表明,尺寸约为10 nm的Bi2WO6量子点均匀沉积在Bi2MoO6-xF2x微球表面,形成新颖的Bi2WO6@Bi2MoO6-xF2x异质结;与纯Bi2MoO6或者Bi2WO6相比,1∶1Bi2WO6@Bi2MoO6-xF2x异质结表现出更好的光催化活性和光电流性质,其对RhB光催化降解的表观速率常数分别为纯BMO和BWO的6.4和11.6倍。PC和EIS图谱分析表明,Bi2WO6量子点表面沉积显著提高Bi2MoO6-xF2x光生电子/空穴的分离效率和迁移速率;活性物种捕获实验证明了·O2-和h+是主要的活性物种。根据实验结果,探讨了F-掺杂和Bi2WO6量子点之间的协同效应对Bi2MoO6的光催化活性的影响机制。  相似文献   

7.
采用简单沉积-沉淀法合成了Bi_2WO_6@Bi_2MoO_(6-x)F_(2x)(BWO/BMO_(6-x)F_(2x))异质结,借助XRD、XPS、TEM、SEM、EDS、UV-Vis-DRS、PC和EIS等测试技术对其组成、形貌、光吸收特性和光电化学性能等进行系统表征,并以模型污染物罗丹明B(Rh B)的光催化降解作为探针反应来评价Bi_2WO_6@Bi_2MoO_(6-x)F_(2x)异质结的光催化活性增强机制。形貌分析表明,所得Bi_2MoO_6微球由大量厚度为20~50 nm的纳米片组成;FE-SEM和HR-TEM分析表明,尺寸约为10 nm的Bi_2WO_6量子点均匀沉积在Bi_2MoO_(6-x)F_(2x)微球表面,形成新颖的Bi_2WO_6@Bi_2MoO_(6-x)F_(2x)异质结;与纯Bi_2MoO_6或者Bi_2WO_6相比,1∶1Bi_2WO_6@Bi_2MoO_(6-x)F_(2x)异质结表现出更好的光催化活性和光电流性质,其对RhB光催化降解的表观速率常数分别为纯BMO和BWO的6.4和11.6倍。PC和EIS图谱分析表明,Bi_2WO_6量子点表面沉积显著提高Bi_2MoO_(6-x)F_(2x)光生电子/空穴的分离效率和迁移速率;活性物种捕获实验证明了·O_2~-和h~+是主要的活性物种。根据实验结果,探讨了F-掺杂和Bi_2WO_6量子点之间的协同效应对Bi_2MoO_6的光催化活性的影响机制。  相似文献   

8.
The quaternary oxychalcogenides Ln4MnOSe6 (Ln=La, Ce, Nd), Ln4FeOSe6 (Ln=La, Ce, Sm), and La4MnOS6 have been synthesized by the reactions of Ln (Ln=La, Ce, Nd, Sm), M (M=Mn, Fe), Se, and SeO2 at 1173 K for the selenides or by the reaction of La2S3 and MnO at 1173 K for the sulfide. Warning: These reactions frequently end in explosions. These isostructural compounds crystallize with two formula units in space group of the hexagonal system. The cell constants (a, c in Å) at 153 K are: La4MnOSe6, 9.7596(3), 7.0722(4); La4FeOSe6, 9.7388(4), 7.0512(5); Ce4MnOSe6, 9.6795(4), 7.0235(5); Ce4FeOSe6, 9.6405(6), 6.9888(4); Nd4MnOSe6, 9.5553(5), 6.9516(5); Sm4FeOSe6, 9.4489(5), 6.8784(5); and La4MnOS6, 9.4766(6), 6.8246(6). The structure of these Ln4MOQ6 compounds comprises a three-dimensional framework of interconnected LnOQ7 bicapped trigonal prisms, MQ6 octahedra, and the unusual LnOQ6 tricapped tetrahedra.  相似文献   

9.
Crystal structures of synthetic phosphates Ce0.33Zr2(PO4)3, Eu0.33Zr2(PO4)3 and Yb0.33Zr2(PO4)3 have been refined by Rietveld method using powder diffraction data. Unit cell parameters: a=8.7419 (4), c=23.128 (2) Å; a=8.7659 (1), c=22.822 (1) Å; a=8.8078 (4), c=22.485 (3) Å, respectively; Z=6. Values of final R-factors in isotropic approximation: Rwp=4.00, Rwp=3.33, Rwp=4.12%, respectively. New space group Pc has been established for the compounds with general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. It has been confirmed that the synthetic phosphates with general formula Ln0.33Zr2(PO4)3 belong to the NZP (sodium zirconium phosphate) structure type.  相似文献   

10.
The luminescent nanocrystalline Yb3+ and Er3+ codoped KLa(WO4)2 has been prepared by Pechini method. X-ray diffraction and transmission electron microscope were used to study the structure of the obtained samples. The average grain size of these samples depended on the annealing temperature, increasing with the increase of the temperature. The cell parameters and the crystallite size of KYbxEr0.02La0.98−x(WO4)2 nanocrystalline decreased with the increase of x value. Luminescence studies showed that the intensity of upconversion emission of the Yb3+ and Er3+ codoped samples was much stronger than that of the Er3+ single doped samples (pumped by 980 nm LD). The upconversion emission mechanisms suggested that all the three bands of upconversion emissions were two-photon process.  相似文献   

11.
Two new isostructural rare earth phosphates Na7Mg13Ln(PO4)12 (Ln=La, Eu) have been synthesized and investigated by X-ray diffraction and optical measurements. They crystallize in the orthorhombic system with the Cmc21 space group (Z=4). The crystal structure exhibits a new type of framework built up from LnO8 (Ln=La, Eu), MO6 (M=0.5Mg+0.5Na) and MgOx (x=5, 6) polyhedra and PO4 tetrahedra linked by common corner, edge or face. It can be described in terms of [Mg4MP4O22] layers stacked along the a direction. These layers are interconnected by [Mg4LnP4O36] undulating chains spreading along the b direction. This framework delimits 6 distinct cavities occupied by Na+ cations. The results of the optical study of Na7Mg13La1−xEux(PO4)12 (x=0, 0.02, 0.1, 1) reveal the presence of two different Eu3+ ion environments whereas the X-ray study predicts the existence of only one Eu site. This difference can be explained by the possible presence of the europium element in the sodium sites with small occupancies which cannot be detected by the X-ray structural determination.  相似文献   

12.
Two structures, all consisting of alternative stacking of hexagonal perovskite layer and graphite-like Ca2O layer, were identified in Ln2Ca2MnO7 systems (Ln=La, Nd and Sm). La2Ca2MnO7 (1), crystallizing in the space group with the lattice constants a=5.62231(7)  Å and c=17.3192(4) Å, contains almost ideal close packed [LnO3] arrays. While for the smaller rare earth cations, e.g., Nd2Ca2MnO7 (2) and Sm2Ca2MnO7 (3), the structure distorts to large unit cell (a′=2a and c′=c). Study of the substituted systems, LnLn′Ca2MnO7 (Ln or Ln′=La, Ce, Pr, Nd, Sm, Eu, Gd) and La2−xSmxCa2MnO7, shows a phase transformation from (1) to (2) at certain value of cation size. The MnO6 octahedra in these compounds are isolated, thus the magnetic property is mainly paramagnetic.  相似文献   

13.
The preparation of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x (SiHA) with 0?x?2 was investigated using a wet precipitation method followed by a heat treatment. X-ray diffraction and Rietveld refinement, Fourier transformed IR (FTIR) spectroscopy, elemental analyses, transmission electron microscopy and thermal analyses were used to characterize the samples. The raw materials were composed of a partially silicated and carbonated apatite and a secondary minor phase containing the excess silicon. Single phase silicated hydroxyapatites, with 0?x?1, could be synthesized after a thermal treatment of the raw powders above 700 °C. The presence of carbonate groups in the raw apatite played an important role in the incorporation of silicates during heating. From the different results, the mechanisms of formation of SiHA are discussed.  相似文献   

14.
Uniform shuttle-like Ln3+ (Eu3+, Tb3+) doped NaLa(WO4)2 nanocrystals have been solvothermally synthesized, and the size of the nanocrystals could be easily controlled by adjusting the volume ratio of ethylene glycol (EG) to water. Doped with 5 mol% Eu3+ and Tb3+ ions, the NaLa(WO4)2 nanocrystals showed strong red and green emissions with lifetimes of 0.8 and 1.40 ms, respectively. A high quenching concentration of 15 mol% was observed in Eu3+-doped NaLa(WO4)2 nanocrystals and 35 mol% in Tb3+-doped NaLa(WO4)2 nanocrystals. The emission intensity measurements of Eu3+-doped NaLa(WO4)2 with different sizes indicated that the emission intensity of shuttles with length of 300 nm in average was stronger than that of shuttles with length of 900 nm in average, but was weaker than that of needles with length of 4 and 9 μm in average.  相似文献   

15.
Ternary lanthanide-molybdenum oxides Ln3MoO7 (Ln=La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is P212121. The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the b-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La3MoO7 shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd3MoO7 show a clear antiferromagnetic transition at 2.5 K. From the susceptibility measurements, both Pr3MoO7 and Sm3MoO7 show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln3MoO7 compound in the temperature range between 370 and 710 K.  相似文献   

16.
The spectroscopic properties of Ln2MoO6:Eu3+ (Ln = La, Gd, Y) compounds were investigated. The differences in the recorded fluorescence spectra are in accord with the different structures. For the La2MoO6:Eu3+ case, the spectrum is compatible with a C2 point site symmetry. It appears that the energy level scheme is connected with the rare earth oxychloride one, so it is possible to determine accurately sets of crystal field parameters simulating the spectrum. For the other compounds, the Eu3+ ions occupy three different point sites. By using the site-selective excitation on the 5D0 level it is possible to identify the energy level scheme characterizing each point site.  相似文献   

17.
The Bi2O3/Bi2WO6 heterojunction photocatalysts were prepared by a two-step solvothermal process using Bi(NO3)3-ethylene glycol solution as Bi source. The catalysts were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflection spectroscopy. The heterostructure catalysts are composed of Bi2O3 nanoparticles as modifier and 3D Bi2WO6 microspheres as substrate. Bi2O3 nanoparticles with diameters of about 10-15 nm are tightly grown on the lateral surface of the Bi2WO6 microspheres. The hierarchical Bi2O3/Bi2WO6 microspheres exhibit higher photocatalytic activity than the single phase Bi2WO6 or Bi2O3 for the degradation of rhodamine B under visible light illumination (λ>420 nm). The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to their improved light absorption property and the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of loading amount of Bi2O3 on the catalytic performance of the heterojunction catalysts was also investigated and the optimal content of Bi2O3 is 3 wt%. The Bi2O3/Bi2WO6 heterojunction photocatalysts are essentially stable during the photocatalytic process.  相似文献   

18.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

19.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

20.
A series of lithium europium double tungsto-molybdate phosphors LiEu(WO4)2−x(MoO4)x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5D07F2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO4)2−x(MoO4)x is investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号