首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phase relations in the cross-section of the K2W2O7-K2WO4-KPO3 containing 15 mol% Bi2O3 were undertaken using flux method. Crystallization fields of K6.5Bi2.5W4P6O34, K2Bi(PO4)(WO4), Bi2WO6, KBi(WO4)2 and their cocrystallization areas were identified. Novel phase K6.5Bi2.5W4P6O34 was characterized by single-crystal X-ray diffraction: sp. gr. P−1, a=9.4170(5), b=9.7166(4), c=17.6050(7) Å, α=90.052(5)°, β=103.880(5)° and γ=90.125(5)°. It has a layered structure, which contains {K7Bi5W8P12O68} layers stacked parallel to ab plane and sheets composed by potassium atoms separating these layers. Sandwich-like {K7Bi5W8P12O68} layers are assembled from [W2P2O13] and [BiPO4] building units, and are penetrated by tunnels with K/Bi atoms inside. FTIR-spectra of K2Bi(PO4)(WO4) and K6.5Bi2.5W4P6O34 were discussed on the basis of factor group theory.  相似文献   

2.
β-UP2O7 has been synthesized under hydrothermal conditions (θ=500°C, P=200 MPa), using UO2 and H3PO4. β-UP2O7 crystallizes in the orthorhombic space group Pn21a, with a=11.526 (2) Å, b=7.048 (2) Å, c=12.807 (2) Å and Z=4. Its structure has been determined through direct methods and difference Fourier synthesis and has been refined to R=0.0396. The structure is built on UO8 polyhedral chains along the b-axis. PO43− and P3O105− groups coexist in the structure and the latter groups form non-linear chains. Cohesion of the structure is made through the linkage of UO8 chains by PO4 and P3O10 groups leading to the formula U2(PO4)(P3O10) instead of β-UP2O7. Vibrational and optical spectra confirm the results obtained by X-ray diffraction. DTA-TGA measurements show that the transformation of U2(PO4)(P3O10) to the cubic α-UP2O7 occurs at θ=870°C.  相似文献   

3.
Phase equilibrium in the pseudo-quaternary system K2O–MoO3–P2O5–Bi2O3 was studied as three-component solvent K2MoO4–KPO3–MoO3 containing 15 mol% Bi2O3 during slow cooling and spontaneous crystallization. The results of the investigation were shown on a composition diagram, which indicates the crystallization fields of K2Bi(PO4)(MoO4), K5Bi(MoO4)4, BiPO4 and K3Bi5(PO4)6. New phosphate K3Bi5(PO4)6 was characterized by single-crystal X-ray diffraction (space group C2/c, a=17.680(4), b=6.9370(14), c=18.700(4) Å, β=113.79(3)°) and FTIR spectroscopy. The possibility of lone electron pair stereoactivity of bismuth was suggested using the calculations of characteristics of the Voronoi–Dirichlet polyhedra for K3Bi5(PO4)6 and K2Bi(PO4)(MoO4).  相似文献   

4.
New complex phosphates of the general formula K2M0.5Ti1.5(PO4)3 (M=Mn, Co) have been obtained from the melting mixture of KPO3, K4P2O7, TiO2 and CoCO3·mCo(OH)2 or Mn(H2PO4)2 by means of a flux technique. The synthesized phosphates have been characterized by the single-crystal X-ray diffraction and the FTIR-spectroscopy. The compounds crystallize in the cubic system with the space group P213 and cell parameters a=9.9030(14) Å for K2Mn0.5Ti1.5(PO4)3 and a=9.8445(12) Å for K2Co0.5Ti1.5(PO4)3. Both phosphates are isostructural with the langbeinite mineral and contain four formula unit K2M0.5Ti1.5(PO4)3 per unit cell. The structure can be described using [M2(PO4)3] framework composed of two [MO6] octahedra interlinked via three [PO4] tetrahedra. The Curie-Weiss-type behavior is observed in the magnetic susceptibility.  相似文献   

5.
A new compound, Na2Zn5(PO4)4, was identified in the system ZnONa2OP2O5 and high-quality crystal was obtained by the melt method. The crystal structure of this compound was solved by direct method from single crystal X-ray diffraction data. The structure was then refined anisotropically using a full-matrix least square refinement on F2 and the refinement converged to R1=0.0233 and wR2=0.0544. This compound crystallizes in the orthorhombic system with space group Pbcn, lattice parameters a=10.381(2) Å, b=8.507(1) Å, c=16.568(3) Å and Z=4. The structure is made up of 3D [Zn5P4O16]n2n covalent framework consisting of [Zn4P4O16]n4n layers. The powder diffraction pattern of Na9Zn21(PO4)17 is explained by simulating a theoretical pattern with NaZnPO4 and Na2Zn5(PO4)4 in the molar ratio of 1:4 and then by Rietveld refinement of experimental pattern. Na2Zn5(PO4)4 melts congruently at 855 °C and its conductivity is 5.63×10−9 S/cm.  相似文献   

6.
The new compound Rb2MgWO2(PO4)2 has been synthesized and characterized by a single-crystal X-structure determination, and IR and Raman spectroscopic studies. The crystal structure is orthorhombic, space group Pbca, with the unit cell dimensions a=9.891(2), b=12.641(2), , Z=8. Compared to the K2MIIWO2(PO4)2 series, where MII=Mg, Mn, Fe, Co, Ni, and Cd, the volume of the unit cell in the present compound is nearly doubled. The MgO6 and WO6 octahedra are arranged into polyhedral groups consisting of two edge sharing MgO6 joined by corners with two WO6 octahedra. These groups are interconnected through the PO4 tetrahedra into layers in a×b plane. The Rb+ ions perform thermally activated displacements within the cavities formed between the polyhedral layers. The origin of various Raman and IR modes is discussed. These results indicate that a clear energy gap exists between the stretching and remaining modes. The most intense modes are shown to be due to vibrations of the W-O bonds.  相似文献   

7.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

8.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

9.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

10.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

11.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

12.
Zr2(MoO4)(PO4)2 is orthorhombic (Sc2W3O12 structure) from 9 to at least 400 K, and shows anisotropic volume negative thermal expansion (αa=−8.35(4)×10−6 K−1; αb=3.25(3)×10−6 K−1; αc=−8.27(5)×10−6 K−1 in the range 122-400 K) similar in magnitude to A2M3O12 (M—Mo or W) with large A3+. The contraction on heating is associated with a pattern of Zr-O-Mo/P bond angle changes that is somewhat similar, but not the same as that for Sc2W3O12. On heating, the most pronounced reductions in the separation between the crystallographic positions of neighboring Zr and P are not associated with significant reductions in the corresponding Zr-O-P crystallographic bond angles, in contrast to what was seen for Sc2W3O12.  相似文献   

13.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

14.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

15.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

16.
Two new niobium phosphates were synthesized and their crystal structures determined from single-crystal X-ray data. [NbOF(PO4)](N2C5H7) (1) (monoclinic, space group P21/c, a=11.442(1), b=9.1983(7), c=9.1696(8) Å, β=109.94(1)°) has a layered structure and is the first example of a negatively charged NbOF(PO4) layer analogous to the MO(H2O)PO4 (M=V, Nb) layers. The layer charge is compensated by interlayer 4-aminopyridnium cations that adopt an unusual arrangement as a consequence of H-bonding and π-π interactions. The interlayer aminopyridnium cations can be exchanged with alkylammonium ions which form bilayers inclined at ∼65° to the NbOF(PO4) layer. [(Nb0.9V1.1)O2(PO4)2(H2PO4)] (N2C2H10) (2) (orthorhombic, space group Pbca, a=15.821(2),b=9.0295(9),c=18.301(2) Å) has a disordered three-dimensional structure based on NbO(PO4) layers cross-linked by phosphate tetrahedra, and has a similar structure to the known vanadium analog [V2O2(PO4)2(H2PO4)] (N2C2H10).  相似文献   

17.
A novel sodium lead pentaborate, NaPbB5O9, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB5O9 crystallizes in the monoclinic space group P21/c with a=6.5324(10) Å, b=13.0234(2) Å, c=8.5838(10) Å, β=104.971(10)°, and Z=4. The crystal structure is composed of double ring [B5O9]3− units, [PbO7] and [NaO7] polyhedra. [B5O9]3− groups connect with each other forming two-dimensional infinite [B5O9]3− layers, while [PbO7] and [NaO7] polyhedra are located between the layers. [PbO7] polyhedra linked together via corner-sharing O atom forming novel infinite [PbO6] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB5O9 were reported.  相似文献   

18.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

19.
Two new gallium phosphates, [NH3(CH2)4NH3][Ga4(PO4)4 (HPO4)] (I) and [NH3(CH2)4NH3][Ga(PO4)(HPO4)] (II), have been synthesized under solvothermal conditions in the presence of 1,4-diaminobutane and their structures determined using room-temperature single-crystal X-ray diffraction data. Compound (I) (Mr=844.90, triclinic, space group P-1, a=9.3619(3), b=10.1158(3) and c=12.6456(5) Å, α=98.485(1), β=107.018(2) and γ=105.424(1)°; V=1070.39 Å3, Z=2, R=3.68% and Rw=4.40% for 2918 observed data [I>3(σ(I))]) consists of GaO4 and PO4 tetrahedra and GaO5 trigonal bipyramids linked to generate an open three-dimensional framework containing 4-, 6-, 8-, and 12-membered rings of alternating Ga- and P-based polyhedra. 1,4-Diaminobutane dications are located in channels bounded by the 12-membered rings in the two-dimensional pore network and are held to the framework by hydrogen bonding. Compound (II) (Mr=350.84, monoclinic, space group P21/c, a=4.8922(1), b=18.3638(6) and c=13.7468(5) Å, β=94.581(1)°; V=1227.76 Å3, Z=4, R=2.95% and Rw=3.37% for 2050 observed data [I>3(σ(I))]) contains chains of edge-sharing 4-membered rings of alternating GaO4 and PO4 tetrahedra constituting a backbone from which hang ‘pendant’ PO3(OH) groups. Hydrogen bonding between the GaPO framework and the diamine dications holds the structure together. A previously reported phase, [NH3(CH2)4NH3][Ga4(PO4)4(HPO4)] (V), structurally related but distinct from its stoichiometric equivalent, (I), has been prepared as a pure phase by this method. Two further materials, [NH3(CH2)5NH3][Ga4(PO4)4(HPO4)] (III) (tricli- nic, lattice parameters from PXD: a=9.3565(4), b=5.0156(2) and c=12.7065(4) Å, α=96.612(3), β=102.747(4) and γ=105.277(3)°) and [NH3(CH2)5NH3][Ga(PO4)(HPO4)] (IV) (Mr=364.86, monoclinic, space group P21/n, a=4.9239(2), b=13.2843(4) and c=19.5339(7) Å, β=96.858(1)°; V=1268.58 Å3, Z=4, R=3.74% and Rw=4.44% for 2224 observed room-temperature data [I>3(σ(I))]), were also prepared under similar conditions in the presence of 1,5-diaminopentane. (III) and (IV) are structurally related to, yet distinct from (I) and (II) respectively.  相似文献   

20.
Two new molybdenyl iodates, K2MoO2(IO3)4 (1) and β-KMoO3(IO3) (2), have been prepared from the reactions of MoO3 with KIO4 and NH4Cl at 180°C in aqueous media. The structure of 1 consists of molecular [MoO2(IO3)4]2− anions separated by K+ cations. The Mo(VI) centers are ligated by two cis-oxo ligands and four monodentate iodate anions. Both terminal and bridging oxygen atoms of the iodate anions form long ionic contacts with the K+ cations. β-KMoO3(IO3) (2) displays a two-dimensional layered structure constructed from 2[(MoO3(IO3)]1− anionic sheets separated by K+ cations. These sheets are built from one-dimensional chains formed from corner-sharing MoO6 octahedra that run along the b-axis that are linked together through bridging iodate groups. K+ cations separate the layers from one another and form long contacts with oxygen atoms from both the iodate anions and molybdenyl moieties. Crystallographic data: 1, monoclinic, space group C2/c, a=12.8973(9) Å, b=6.0587(4) Å, c=17.694(1) Å, β=102.451(1)°, Z=4, Mo, λ=0.71073, R(F)=2.64% for 97 parameters with 1584 reflections with I>2σ(I); 2, monoclinic, space group P21/n, a=7.4999(6) Å, b=7.4737(6) Å, c=10.5269(8) Å, β=109.023(1)°, Z=4, Mo, λ=0.71073, R(F)=2.73% for 83 parameters with 1334 reflections with I>2σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号