首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The type of interaction in quasi-binary system CuInSe2 (CIS)-CdSe was investigated using differential thermal and X-ray phase analysis methods. The limits of existence of solid solutions based on low-temperature (α) and high-temperature (γ) CIS modifications and CdSe (β) with chalcopyrite, sphalerite and wurtzite structures, respectively, were established in sub-solidus region at 620 K and 870 K. For certain compositions of solid solutions, the structure was refined using powder X-ray diffraction. A phase diagram of the CIS-CdSe system was constructed. A peritectic process L+β⇔γ takes place in the system at 1260 K.  相似文献   

2.
The phase diagram of the system CdI2-Ag2Se is studied by means of X-ray diffraction, differential thermal analysis and measurements of the density of the material. The unit cell parameters of the intermediate phase 2CdI2·3Ag2Se were determined a = 0.6387 Å, b = 4.311 Å, c = 4.044 Å; α = 113.72°, β = 90.27° and γ = 94.85°. The intermediate phase 2CdI2·3Ag2Se has a polymorphic transition at 125 °C. It melts incongruently at 660 °C.  相似文献   

3.
Using high purity ZnS, MnS, Cu2S, and In2S3, the binary systems were examined between 400 and 1300°C using evacuated fused silica capsules to contain intermediate mixtures. X-Ray and microscopic examination of samples at room temperature permitted the probable phase relations to be established. The extent of the very important stability regions for zinc blende and wurtzite solid solutions was firmly established and in the system MnSCuInS2, the stability fields for the intermediate γ-MnS (wurtzite) solid solutions and CuInS2 solid solutions were determined.  相似文献   

4.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

5.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

6.
In this communication, we report on the synthesis and characterization of a series of compounds with the general composition Ce1−xSrxO2−x (0.0≤x≤1.0), to establish a detailed phase relation in the CeO2–SrO system. The X-ray diffraction (XRD) pattern of the each product was refined to determine the solid solubility and the homogeneity range. The solid solubility limit of SrO in CeO2 lattice, under the slow cooled conditions, is represented as Ce0.91Sr0.09O1.91 (i.e. 9 mol% of SrO). A careful delineation of the phase boundary revealed that the stoichiometric SrCeO3, in fact, contains a little amount of CeO2 also. The mono-phasic compound could be obtained at the nominal composition Sr0.55Ce0.45O1.45. The nominal composition Sr2CeO4, under the heat treatment used in the present investigation, was a bi-phasic mixture of SrCeO3 and SrO. No new ordered phases were obtained in this system.  相似文献   

7.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

8.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

9.
A diagram for the phase equilibria established in the two-component Fe2V4O13-WO3 system (one of the intersections of the Fe2O3-V2O5-WO3 three-component system) has been constructed based on the measurements made by DTA and X-ray phase analysis. The diagram shows that the system investigated does not appear to be a true two-component system, even below the solidus line.  相似文献   

10.
Solubility data of the KVO3 + NH4HCO3 + NH4VO3 + KHCO3 + H2O system at 303 K were determined under varying pressure conditions. The results were used to construct a phase diagram in the oblique projection according to Jänecke's method. At constant p and T this diagram includes two invariant points, five double saturated liquid curves, and four crystallization fields corresponding to KVO3, NH4HCO3, NH4VO3, and KHCO3. It has been found that ammonium meta-vanadate is a sparingly soluble salt. NH4VO3 and KHCO3 compose the stable pair of salts, whereas KVO3 and NH4HCO3 form the unstable salt-pair. A thorough knowledge of the solubility phase diagram for this reciprocal quaternary salt system is the theoretical basis of the carbonation process of the potassium meta-vanadate saturated ammonia solution.  相似文献   

11.
用三原子模型的准经典轨线方法研究了Cl与C2H6(v=0,j)的反应。计算结果表明,反应产物HCl的角度分布基本上为各向同性,其振动分布处于基态,与实验结果相一致。对反应轨线的研究表明,该反应为一直接反应,而且反应碰撞在低及高的碰撞参数下的机理不一样,在低碰撞参数下反应碰撞是直接完成的,产物HCl以向后散射为主,转动基本上是冷的,但比高碰撞参数下的热。在高的碰撞参数下则生成短寿命的碰撞复合物,产物  相似文献   

12.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

13.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

14.
A detailed thermodynamic study of the LaS2-La2S3 system in the temperature range 350-1000 °C was performed, starting from high quality crystals LaS2 as the highest polysulfide in the system, and using a sensitive static tensimetric method with a quartz Bourdon gauge and a membrane as a null-point instrument. The pS-T-x diagram obtained has shown that the phase region covering the composition between LaS2 and La2S3, which was previously described as a single grossly nonstoichiometric phase, consists of three discrete stoichiometric phases, LaS2.00, LaS1.91, and LaS1.76, where compositions could be determined with an accuracy of ±0.01 f.u. The thermodynamic characteristics of evaporation of the polysulfides as well as standard heat of LaS2 formation were calculated. The role of kinetics in the formation of ordered superstructures of sulfur-poorer polysulfides with different formal concentration of vacancies is considered.  相似文献   

15.
In the SrS-Ga2S3 system, there exist two individual compounds: SrGa2S4 (a = 2.084 nm, b = 2.050 nm, c = 1.220 nm; congruent melting at 1530 K) and Sr2Ga2S5 (a = 1.253 nm, b = 1.203 nm, c = 1.117 nm; peritectic melting at 1330 K); both are orthorhombic. We discovered a compound of composition Sr4Ga2S7; this compound crystallizes in cubic system with the unit cell parameter a = 0.6008 nm, space group Pa3, and decomposes by a solid-phase reaction at 870 K. Eutectic compositions are 42 and 73 mol % Ga2S3; eutectic melting temperatures are 1210 and 1170 K, respectively. The SrS solubility in γ-Ga2S3 at 1070 K reaches 4 mol %.  相似文献   

16.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.  相似文献   

17.
Phase equilibria in the Ag2Te-PbTe-Bi2Te3 quasi-ternary system were studied by differential thermal analysis, X-ray powder diffraction, and measurements of microhardness and emf of concentration circuits with an Ag4RbI5 solid electrolyte. Some polythermal sections and isothermal (600 and 800 K) sections of the phase diagram, and also a projection of the liquidus surface were constructed. The primary crystallization fields of phases were determined, and the types and coordinates of invariant and monovariant equilibria were found. The system is characterized by the formation of a wide continuous band of high-temperature solid solutions (γ phase) with a cubic structure along the PbTe-AgBiTe2 section. With decreasing temperature (T ≤ 715 K), AgBiTe2 and γ solid solutions, close in composition to this compound, experience solid-phase decomposition to form Bi2Te3, ternary tetradymite-like phases of the PbTe-Bi2Te3 boundary system, and the low-temperature phase of Ag2Te.  相似文献   

18.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

19.
Three earth alkali-germanium monophosphates MIIGe(PO4)2 (M=Ca, Sr, Ba) were prepared by solid state reaction and their structures, previously unknown, studied by Rietveld analysis. BaGe(PO4)2 and high-temperature β-SrGe(PO4)2 (space group C2/m, Z=2) are fully isotypic with yavapaiite, whereas CaGe(PO4)2 and low-temperature α-SrGe(PO4)2 (C2/c, Z=4) are distorted derivatives. The phase transition between the two forms is observed for the first time. The thermal expansion, resulting from several structural mechanisms, is very anisotropic.  相似文献   

20.
phase equilibria in the Tl2Te-SnTe-Bi2Te3 system were studied by differential thermal analysis (DTA), X-ray powder diffraction, and microhardness measurements. Some polythermal sections and isothermal (at 600 and 800 K) sections of the phase diagram and a projection of the liquidus surface were constructed. It was shown that the system is characterized by the formation of solid solutions with the Tl5Te3 structure (δ) and solid solutions based on SnTe (γ1), Tl2Te (α), Bi2Te3 (β), and two TlBiTe22 and γ′2) phases. Their homogeneity regions were determined. The liquidus surface consists of the primary crystallization fields of the β-, γ1-, γ′2-, and δ phases and the compounds SnBi2Te4 and SnBi4Te7. The liquidus of the α phase is degenerate. The primary crystallization fields of phases were determined, and the types and coordinates of in- and monovariant equilibria were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号