首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host lattice Ba3Si5O13−δNδ oxonitridosilicates have been synthesized by the traditional solid state reaction method. The lattice structure is based on layers of vertex-linked SiO4 tetrahedrons and Ba2+ ions, where each Ba2+ ion is coordinated by eight oxygen atoms forming distorted square antiprisms. Under an excitation wavelength of 365 nm, Ba3Si5O13−δNδ:Eu2+ and Ba3Si5O13−δNδ:Eu2+,Ce3+ show broad emission bands from about 400-620 nm, with maxima at about 480 nm and half-peak width of around 130 nm. The emission intensity is strongly enhanced by co-doping Ce3+ ions into the Ba3Si5O13−δNδ:Eu2+ phosphor, which could be explained by energy transfer. The excitation band from the near UV to the blue light region confirms the possibility that Ba3Si5O13−δNδ:Eu2+, Ce3+ could be used as a phosphor for white LEDs.  相似文献   

2.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

3.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

4.
Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu2+ phosphors. The obtained BAM:Eu2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu2+ phosphor prepared by citrate-gel method, spherical BAM:Eu2+ phosphor particles showed a higher emission intensity.  相似文献   

5.
SrZnO2:Eu3+ has been synthesized by solid-state reaction and its photoluminescence in ultraviolet (UV)-vacuum ultraviolet (VUV) range was investigated. The broad bands around 254 nm are assigned to CT band of Eu3+-O2−. With the increasing of Eu3+ concentration, Eu3+ could occupy different sites, which leads to the broadening of CT band. A sharp band is observed in the region of 110-130 nm, which is related to the host absorption. The phosphors emit red luminescence centered at about 616 nm due to Eu3+5D07F2 both under 254 and 147 nm, but none of Eu2+ blue emission can be observed.  相似文献   

6.
A novel red emitting phosphor, Eu3+-doped Ca2SnO4, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Ca2SnO4: Eu3+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 500 nm for the particles with spherical shape. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 615 nm under UV excitation. The excellent luminescence properties make it possible as a good candidate for plasma display panels (PDP) application. Splitting of the 5D0-7FJ transitions of Ca2SnO4: Eu3+ suggests that the Eu3+ ions occupied two nonequivalent sites in the crystallite. The luminescence lifetime measurement showed a bi-exponential decay, providing other evidence for the existence of two different environments for Eu3+ ions.  相似文献   

7.
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by 5D0-7F2 transition of Eu3+ (618 nm, red). The PL and CL intensities of Eu3+ increase with increasing the annealing temperature and the number of coating cycles. The optimum concentration for Eu3+ was determined to be 5 mol% of Gd3+ in GdVO4 host.  相似文献   

8.
Vacuum ultraviolet (VUV) excitation and photoluminescent (PL) properties of Eu3+ and Tb3+ ion-doped aluminate phosphors, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ have been investigated. X-ray diffraction (XRD) patterns indicate that the phosphor GdCaAl3O7 forms without impurity phase at 900 °C. Field emission scanning electron microscopy (FE-SEM) images show that the particle size of the phosphor is less than 3 μm. Upon excitation with VUV irradiation, the phosphors show a strong emission at around 619 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The results reveal that both GdCaAl3O7:RE3+ (RE=Eu, Tb) are potential candidates as red and green phosphors, respectively, for use in plasma display panel (PDP).  相似文献   

9.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

10.
SrF2:Eu3+ nanospheres with homogeneous diameter have been synthesized by a microemulsion-mediated hydrothermal method for the first time, in which quaternary microemulsion of CTAB/water/cyclohexane/n-pentanol was used. The possible reaction mechanism and the luminescent properties of SrF2:Eu3+ nanospheres were also investigated in this paper. The morphology and grain sizes of final products were characterized by field emission scanning electron microscopy and transmission electron microscopy, indicating that most of the products were nanospheres with an average diameter of ∼50 nm. Room-temperature emission spectra, recorded under 394-nm excitation, showed that the transition of 5D0 → 7F1 emission be dominating in SrF2:Eu3+ nanospheres. From the dependence of the luminescence intensity on the concentration of Eu3+ ions, the optimal dopant concentration is 2 mol%.  相似文献   

11.
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)2, Eu(NO3)3 and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ 5D0-7FJ (J=1-4) transitions, with the magnetic dipole 5D0-7F1 allowed transition (590 nm) being the most prominent emission line.  相似文献   

12.
Nanocrystalline YVO4:Eu3+ was synthesized by direct precipitation reaction, which was then annealed at different temperatures. The results of XRD showed that nanocrystalline YVO4:Eu3+ could be obtained in solution at 60 °C, and the mean particle sizes of samples are increased as annealing temperature is increased. The results of TEM exhibit that the sizes of samples are around 5-30 nm. Studies on the excitation spectra show that there are a large number of the structural distortions in smaller particles. By analyzing line splitting patterns and peaks broadening in the emission spectra, we consider that the deviations in intensity patterns of 5D0-7F2 are affected by distortions of crystal lattice. Some abnormal behaviors can be attributed to higher ratio of surface to volume, which lead to the different local symmetry environment of Eu3+ ions on the surface.  相似文献   

13.
Eu3+-doped Gd3PO7 nanospheres with an average diameter of ∼300 nm and a narrow size distribution have been prepared by a facile combustion method and structurally characterized by X-ray diffraction and field emission scanning electron microscopy. The luminescent properties were systemically studied by the measurement of excitation/emission spectra, and emission spectra under different temperatures, as well as by photostability. The strong red-emission intensity peaking at 614 nm originates the 5D07F2 transition and is observed under 254-nm irradiation, indicating that Eu3+ ions in Gd3PO7 mainly occupied non-centrosymmetry sites. The CIE1931 XY chromaticity coordinates of Gd3PO7:Eu3+ nanospheres are (x=0.654, y=0.345) in the red area, which is near the National Television Standard Committee standard chromaticity coordinates for red. Thus, Gd3PO7:Eu3+ nanospheres may be potential red-emitting phosphors for PDP and Xe-based mercury-free lamps.  相似文献   

14.
Nanocrystalline ZrO2:Dy3+ were prepared by sol-gel and the structural and photoluminescence properties characterized. The crystallite size ranges from 20 to 50 nm and the crystalline phase is a mixture of tetragonal and monoclinic structure controlled by dopant concentration. Strong white light produced by the host emission band centered at ∼460 nm and two strong Dy3+ emission bands, blue (488 nm) and yellow (580 nm), under direct excitation at 350 nm were observed. The highest efficiency was obtained for 0.5 mol% of Dy3+. Emission is explained in terms of high asymmetry of the host suggesting that Dy3+ are substituted mainly into Zr4+ lattice sites at the crystallite surface. Luminescence quenching is explained in terms of cross-relaxation of intermediate Dy3+ levels.  相似文献   

15.
The blue phosphors Na(2?x)Ca(1?x)SiO4:xCe3+ were synthesized by the sol–gel method and their luminescence characteristics were investigated for the first time. Structural information about prepared samples is obtained by analyzing the XRD patterns and SEM micrographs. The photoluminescence (PL) excitation spectra indicate that the Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors can be effectively excited by ultraviolet (360 nm) light. The PL emission spectra exhibit tunable blue broadband emission with the dominant wavelength of 427–447 nm under excitation of 360 nm by controlling the doping concentration of Ce3+. The concentration quenching effect for Ce3+ was found at the optimum doping concentration of 4 mol%. The Commission Internationale de l’Eclairage 1931 chromaticity coordinates of Na1.96Ca0.96SiO4:0.04Ce3+ are (0.1447, 0.0787), which are better color purity compared to the commercial Eu2+-doped BaMgAl10O17 phosphor. Na1.96Ca0.96SiO4:0.04Ce3+ composition shows intense blue emission (peak wavelength, 439 nm) with relative intensity versus commercial BaMgAl10O17:Eu2+ blue phosphor (Nichia) 65 and 158 % under 254 and 365 nm excitation, respectively. All the results indicate that Na(2?x)Ca(1?x)SiO4:xCe3+ phosphors are potential candidate as a blue emitting phosphor for UV-converting white light-emitting diodes.  相似文献   

16.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

17.
We report the photoluminescence properties of a novel powellite-based red-emitting phosphor material: CaLa1−xNbMoO8:xEu3+ (0.01, 0.03, 0.05, 0.1) for the first time. The photoluminescence investigations indicated that CaLa1−xNbMoO8:xEu3+ emits strong red light at 615 nm originating from 5D07F2 (electric dipole transition) under excitation either into the 5L0 state with 394 nm or the 5D2 state with 464 nm, that correspond to the two popular emission lines from near-UV and blue LED chips, respectively. When compared with emission intensity from a CaMoO4:Eu3+, the emission from CaLaNbMoO8:Eu3+ showed greater intensity values under the same excitation wavelength (394 nm). The enhanced red emission is attributed to the enhanced f-f absorption of Eu3+. These materials could be promising red phosphors for use in generating white light in phosphor-converted white light emitting diodes (WLEDs).  相似文献   

18.
SiO2 crystals have been used in electroluminescence devices and thermoluminescence (TL) dosimeters. However, their emission mechanisms have not yet been clearly explained. Recently, it has become possible to obtain amorphous, highly pure, SiO2 prepared by the sol-gel method. The emission mechanism of TL was investigated using Al3+ and/or Eu3+-doped SiO2 crystalline samples prepared by heat-treating under much lower temperature than the melting point of SiO2. The TL spectrum of Eu3+-doped sample had main peaks due to the electron transitions from 5D2 to 7F5 (ca. 570 nm, yellow peak) and from 5D0 to 7F2 (ca. 610 nm, red peak). The yellow peak intensity has a maximum value in the SiO2 doped with near 1 mmol% of Eu2O3, while the red peak intensity was almost constant. These facts suggest that bright yellow emission of SiO2TL phosphor is synthesized by the diffusion of Eu3+ ion in SiO2 matrix prepared by sol-gel method.  相似文献   

19.
Blue-emitting Eu2+-doped CaMgSi2O6 phosphors were prepared by the reverse micelle method. The resultant particles were nanocrystalline with a grain size of about <300 nm and exhibited a characteristic blue emission spectrum centered at 445 nm induced by the oxygen coordinated Eu2+ ions. By using the corresponding nanophosphors followed by the formation of a uniform phosphor layer, we have demonstrated the mini-sized transparent plasma-discharge panels and investigated their luminance characteristics. Phosphor coated panel is properly transparent, ≥65%, at the visible wavelength region and illuminates a characteristic blue emission under Ne/Xe plasma discharge conditions. Thus, we can obtain a fast decaying, robust blue-emitting silicate phosphor layer under excited plasma radiation for upcoming emissive display devices like as transparent and three-dimensional plasma display panels.  相似文献   

20.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号