首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of the C=N bond in PhCH=NPh with the carbanionic species Ph2PCH2-, leading to the N-phenyl beta-aminophosphine Ph2PCH2CH(Ph)NHPh, L1, is described. This molecule reacts with different organic electrophiles to afford related compounds Ph2PCH2CH(Ph)NPhX (X = SiMe3, L2; COPh, L4), [Ph2MePCH2CH(Ph)NHPh]+(I-), L3, and [Ph2PCH2CH(Ph)N(Ph)CO]2, L5, containing two amido and two phosphino functions. The coordination properties of L1, L2, and L4 have been studied in palladium chemistry. The X-ray structure of [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] shows the bidentate coordination mode for the L1 ligand with equatorial C(Ph)-N(Ph) phenyl groups. [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] crystallizes at 298 K in the space group P2(1)/n with cell parameters a = 10.689(2) A, b = 21.345(3) A, c = 12.282(2) A, beta = 90.294(12) degrees, Z = 4, D(calcd) = 1.526. The reaction between 2 equiv of L1 and [PdCl(eta3-C3H5)]2 affords the [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] complex in which an unexpected N-H.Cl intramolecular interaction has been observed by an X-ray diffraction analysis. [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] crystallizes at 298 K in the monoclinic space group Cc with cell parameters a = 10.912(1) A, b = 17.194(2) A, c = 14.169(2) A, beta = 100.651(9) degrees, Z = 4, D(calcd) = 1.435. Neutral and cationic alkyl or allyl palladium chloride complexes containing L1 are also reported as well as a neutral allyl palladium chloride complex containing L4. Variable-temperature 31P[1H] NMR studies on the allyl complexes show that the eta3/eta1 allyl interconversion is enhanced by a positive charge and also by a N-H.Cl intramolecular interaction.  相似文献   

2.
The hydrothermal reaction of H2tp (tp = terephthalate), [Ph3PCH2Ph]Cl and water with Cd(O2CCH3)(2).2H2O gives rise to a novel ribbon-candy-like supramolecular architecture with twofold interpenetration of an unprecedented 3D 8(2)10-a net formed by polymer ([Ph3PCH2Ph][Cd(tp).Cl].2H2O]n containing giant rhombic channels, which displays strong fluorescent emission in the solid state.  相似文献   

3.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

4.
1INTRODUCTION Recently,the design and preparation of coordina-tion polymers with new porous frameworks are of great interest due to their potential functionalities such as catalysis,gas absorption,separation and molecu-lar recognition.In designing1-D,2-D and3-D porous coordination polymers,the selection of appropriate ligands is crucial for determining the structure.The mixed-linker systems of both carboxylates and pyri-dyls have proved to be effective for the preparation of novel coordi…  相似文献   

5.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

6.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

7.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   

8.
Dai JC  Wu XT  Fu ZY  Cui CP  Hu SM  Du WX  Wu LM  Zhang HH  Sun RQ 《Inorganic chemistry》2002,41(6):1391-1396
Three novel complexes, Cd3tma2*13H2O (1), Cd3tma2*dabco*2H2O (2), and Cd3Htma3*8H2O (3) (tma = trimesate), of cadmium(II)-trimesate coordination polymers are obtained from hydrothermal reaction. 1 (C18H32O25Cd3) crystallizes in the monoclinic C2/c space group [a = 18.985(2) A, b = 7.3872(6) A, c = 20.432(2) A, = 97.1660(10), and Z = 4]. 2 (C24H22N2O14Cd3) crystallizes in the monoclinic P2(1)/c space group [a = 10.1323(2) A, b = 19.5669(5) A, c = 13.15880(10) A, = 108.9810(10), and Z = 4]. 3 (C27H28O26Cd3) belongs to the trigonal P31c space group [a = 15.7547(3) A, b = 15.7547(3) A, c = 7.93160(10) A, and Z = 2]. The Cd(II) centers in the three complexes are bridged by tma ligands in the coordination fashion of unidentate, bridging unidentate, bidentate, chelating bis-bidentate, chelating/bridging bis-bidentate, or chelating/bridging bidentate to form the T-shaped molecular bilayer motif for 1, chicken-wire-like motif for 2, and honeycomb-like porous structure for 3, respectively, in which the T-shaped molecular bilayer motif and chicken-wire-like motif are further interlinked in interdigitating or alternating fashion to construct the different coordination architectures. These three complexes exhibit strong fluorescent emission bands at 355 nm (lambda(ex) = 220 nm) for 1, 437 nm (lambda(ex) = 365 nm) for 2, and 353 nm (lambda(ex) = 218 nm) for 3 in the solid state at room temperature.  相似文献   

9.
The compounds (Me4N)[A(M(SC(O)Ph)3)2] (A = K, M = Cd (2); A = Na, M = Hg (3); and A = K, M = Hg (4)) were synthesized by reacting the appropriate metal chloride with A+PhC(O)S- and Me4NCl in the ratios 1:3:1 and 2:6:1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. All the compounds are isomorphous, isostructural, and crystallized in the space group P1 with Z = 1. Single-crystal data for 2: a = 106670(2) A, b = 111522(2) A, c = 119294(2) A, alpha = 71782(1) degrees, beta = 85208(1) degrees, gamma = 69418(1) degrees, V = 126140(4) A3, Dcalc = 1528 g cm-3. Single-crystal data for 3: a = 10840(2) A, b = 10946(4) A, c = 12006(3) A, alpha = 7218(2) degrees, beta = 8675(2) degrees, gamma = 6743(2) degrees, V = 12493(6) A3, Dcalc = 1756 g cm-3. Single-crystal data for 4: a = 104780(1) A, b = 112563(2) A, c = 119827(2) A, alpha = 71574(1) degrees, beta = 85084(1) degrees, gamma = 70705(1) degrees, V = 126523(3) A3, Dcalc = 1755 g cm-3. In the [A(M(SC(O)Ph)3)2]- anions, each M(II) atom is bonded to three thiobenzoate ligands through sulfur atoms, giving a trigonal planar MS3 geometry. The carbonyl oxygen atoms from the two [M(SC(O)Ph)3]- anions are bonded to the alkali metal atom, providing an octahedral environment. Solution metal NMR studies showed the concentration-dependent dissociation of the alkali metal ions in the trinuclear anions.  相似文献   

10.
The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.  相似文献   

11.
陈学太  翁林红 《结构化学》1991,10(3):227-230
<正> Compound (Ph3PCH2Ph)[Ni (OSNC5H3)2] . DMF was obtained from the reaction.of NiCl2,Na2(OSNC5H3)and Ph3PCH2PhCl. Mr = 735. 53,monoclinic,P21/ c,a=9. 857(6),b=17. 594(9),c=21. 369(10) A,β=102. 85(4)°,V=3613. 1A3,Z = 4,Dc=1. 35g/cm3,λ(Mo-Ka) = 0.71073A.μ=7. 3cm-1,F(000) = 1532,The nickel (Ⅲ) ion is coordinated by two 2-mercapto-3-pyridinolate ligands to give an approximate square-plannar configuration with cis-geometry.  相似文献   

12.
Two new compounds containing the title diphosphono-polyoxometalate anion and diprotonated ethylenediamine (enH(2)) or piperazine (ppzH(2)) countercations have been hydrothermally synthesized and structurally characterized ((enH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].7H(2)O, triclinic, P(-)1, Z = 2, a = 10.3455(7) A, b = 13.136(1) A, and c = 20.216(3) A, alpha = 93.247(6) degrees, beta = 96.434(6) degrees, and gamma = 111.900(6) degrees; (ppzH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].8H(2)O, triclinic, P(-)1, Z = 2, a = 13.255(2) A, b = 13.638(2) A, and c = 16.874(4) A, alpha = 93.20(2) degrees, beta = 101.27(2) degrees, and gamma = 105.87(1) degrees). The anion is a ring of three pairs of edge-sharing octahedra of Mo(V)O(6) (with Mo(V)-Mo(V) bonds) that share corners with each other. The diphosphonate groups connect the pairs at the periphery. The ring is "capped" by a tetrahedron of Mo(VI)O(4). According to magnetic measurements, the compounds are diamagnetic.  相似文献   

13.
Two new hybrid organic/inorganic copper oxovanadium diphosphonates [Cu2(phen)2(O3PCH2PO3)(V2O5)(H2O)] x H2O (1) and [(Cu2(phen)2(O3P(CH2)3PO3)(V2O5)] x C3H8 (2) have been obtained by hydrothermal synthesis. The compounds are monoclinic, and they crystallize in the space group P2(1)/n with cell parameters of a = 11.788(2) A, b = 17.887(3) A, c = 14.158(2) A, and beta = 93.99(0) degrees and in the space group C2/c with cell parameters of a = 11.025(1) A, b = 18.664(2) A, c = 15.054(2) A, and beta = 90.06(0) degrees, respectively. Both compounds present two-dimensional frameworks built up from infinite chains of corner-sharing vanadium tetrahedra and diphosphonate groups connected by copper tetramers for (1) and copper dimers for (2). The remarkable feature of (2) is the encapsulation of propane molecules, stabilized by strong hydrogen bonding between the layers. The magnetic properties of the compounds have been investigated showing antiferromagnetic coupling with Tmax = 64 K for (1) and Curie-like paramagnetic behavior for (2).  相似文献   

14.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

15.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

16.
At elevated temperatures (90-130 degrees C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph, or NHPh; Tp = hydridotris(pyrazolyl)borate) undergo regioselective hydrogen-deuterium (H/D) exchange with deuterated arenes. For X = OH or NHPh, H/D exchange occurs at hydroxide and anilido ligands, respectively. For X = OH, OPh, Me, Ph, or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions or PMe3 ligands. For TpRu(PMe3)(NCMe)Ph, the H/D exchange occurs at 60 degrees C at all three Tp positions and the phenyl ring. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate), and TpRu(PMe3)2SH do not initiate H/D exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the H/D exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic nondative ligand (hydroxide or anilido) or Tp positions via net D+ transfer.  相似文献   

17.
New ethylenediphosphonates of molybdenum, A[Mo2O5(O3PCH2CH2PO3)] (A = NH4 (1), Tl (2), Cs (3), Rb (4)), and K(H3O)[Mo2O5(O3PCH2CH2PO3)] (5), have been synthesized by a hydrothermal method and structurally characterized by X-ray diffraction, spectroscopic, and thermal studies. These compounds consist of pillared anionic layers [Mo2O5(O3PCH2CH2PO3)]2-, with A+, K+, and H3O+ ions in the interlayer region as well as in the cavities within the anionic layers. Single-crystal X-ray structures of compounds 1 and 5 have been determined. They crystallize in the orthorhombic space group Cmca with Z = 8 and have the following unit cell parameters. For 1, a = 25.60(1), b = 10.016(4), and c = 9.635(3) angstroms and for 5, a = 25.63(1), b = 10.007(2), and c = 9.512(1) angstroms.  相似文献   

18.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

19.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

20.
The first monomeric antimony alkoxides, Sb(OC(6)H(3)Me(2))(3) (1) and Sb(OEt)(5) x NH(3) (2), have been crystallographically characterized. The former adopts a trigonal pyramidal geometry, while the latter is octahedral about antimony; hydrogen bonding between NH(3) and SbOEt groups in Sb(OEt)(5) small middle dotNH(3) creates a one-dimensional lattice arrangement. Reaction of pyridine with SbCl(5) in EtOH/hexane yields the salt [Hpy(+)](9)[Sb(2)Cl(11)(5)(-)][Cl(-)](4) (3), which has also been crystallographically characterized. Crystallographic data: 1, C(24)H(27)O(3)Sb, a = 10.9080(2), b = 11.9660(2), c = 17.7260(4) A, alpha = 109.740(1) degrees, monoclinic P2(1)/c (unique axis a), Z = 4; 2, C(10)H(28)NO(5)Sb, a = 7.7220(1), b = 19.0700(2), c = 21.6800(3) A, beta = 93.4960(7) degrees, monoclinic P2(1)/c, Z = 8; 3, C(45)H(54)Cl(15)N(9)Sb(2), a = 13.4300(2), b = 14.4180(2), c = 17.4180(3) A, alpha = 82.7650(7), beta = 77.5570(7), gamma = 70.7670(7) degrees, triclinic P1, Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号