共查询到16条相似文献,搜索用时 54 毫秒
1.
用时间分辨窝里叶红外发射谱研究了高振动激发态CO向C2H2的传能,得到了CO(v=1-3)各振动态布展及其随时间的变化,利用微分法解出弛豫微分方程组,获得CO(v=1-3)向C2H2的传能速率常数分别为:2.0±0.1,6.0±0.2和9.1±0.8(10-13cm3·molecule-1·s-1).传能速率随着振动量子数的增加而迅速增加.CO的振动能应向C2H2的对称伸缩模v2近共振V-V传递.传能过程中还可能形成二聚体络合物,加速了CO(v)向C2H2的传能.用abinitio方法确定了CO...C2H2两种可能的直线构型. 相似文献
2.
3.
用时间分辨-傅里叶变换红外发射光谱研究了热的氢原子与CO2分子间高效率的平动-振动(T-V)能传递.热的氢原子由ArF激光光解H2S得到,这种氢原子的平动能为223 kJ/mol.实验中观察到了从2130 cm-1到2400 cm-1的红外发射谱带,它归属于高振动激发的CO2分子的非对称伸缩振动(v3).对这一发射谱带的光谱拟合显示CO2的非对称伸缩振动被激发到了较高的振动态,振动量子数达到了v=7.并且有5580 cm-1的能量经传能过程由氢原子到达了CO2的v3模.实验条件下氢原子与CO2的T-V传能效率为0.30.实验结果与Schatz等人的用3D半经典计算预测的碰撞截面符合的很好. 相似文献
4.
用TEA CO_2激光将C_2H_4分子激发到高振动激发态,高振动激发态的C_2H_4分子与基态的K原子碰撞发生振动态→电子态(V→E)传能过程,根据提出的能级组模型,对测得的时间分辨原子荧光信号进行处理,获得温度在453-663 K范围内,C_2H_4-K体系中V→E传能速率的数量级为10~(-10)/cm~3·molecule~(-1)·s~(-1),对应的碰撞传能截面约为0.30~0.80 nm.随着反应温度升高,V→E传能截面减小.上述实验结果表明碰撞体间吸引相互作用在这种非共振的V→E传能过程中起主要作用.利用多极相互作用势下的碰撞络合物模型对实验结果进行了讨论. 相似文献
5.
采用振动自洽场-组态相互作用(SCF-CI)方法通过实验振动光谱优化了CO2分子的势能函数,由该势能函数计算得到的纯振动光谱数据与实验值相比,所有能级的误差均在4cm-1以内,均方根偏差为1.50cm-1,所预测的Π态振转光谱也与实验值很接近. 相似文献
6.
7.
8.
Rh(acac)(CO)_2是烯烃氢甲酰化、氢硅化及一氧化碳加氢反应重要催化剂.晶体具有红绿二色性·在4000至80cm~(-1)范围测定了其红外和拉曼光谱;采用简化的一般价力场(SGVFF),对观测谱带进行了简正坐标分析。1 实验方法Rh(acac)(C0)_2按文献方法合成,并重结晶。红外光谱:用CsI压片在P-E 983G红外光谱仪上测试了4000~180cm~(-1)范围内的光谱,分辨率2cm~(-1).550~80 cm~(-1)波段在Digilab FTS-20E/D-V真空型傅氏光谱仪上得到。 相似文献
9.
采用飞秒时间分辨吸收光谱手段观测了在500和800 nm激发下高光培养的紫色光合细菌Rhodopseu-domonas(Rps). palustris外周捕光天线LH2(HL-LH2)中不同共轭链长类胡萝卜素(Carotenoid, 简称Car)和细菌叶绿素a(Bacteriachlorophyll a, 简称BChl a)的特征吸收光谱. 光谱动力学分析结果表明, HL-LH2中不同Car分子间可能存在复杂的单重激发态能量平衡过程, Car分子同时向BChl a分子发生多途径的单重激发态能量传递, B800主要接受来自Car的S2和S1态能量; B850则主要接受来自长共轭链Car(共轭双键数目n=13)的S1态和B800的激发态能量, 整个能量传递过程在3~5 ps内完成. 相似文献
10.
在束-气和束-束实验条件下,详细研究了NH2(A2A1,090,423)自由基分别与Ar,N2,O2和NH3碰撞引起的电子态猝灭和转动态-态传能,获得了总的猝灭截面σQ(分别为≤0.17、0.26、0.30和0.48 nm2),以及相对转动态-态传能截面.利用碰撞络合物模型计算的电子猝灭截面与实验测得的截面具有基本相同的趋势,表明长程吸引势在猝灭过程中起着重要的作用.同时还发现,转动态-态传能中相对截面随着碰撞对的折合质量的减小而下降.由于NH3具有较大的偶极矩以及O2的开壳层电子结构使得猝灭截面增大,而转动态-态传能截面减小. 相似文献
11.
The photon-excited NO2 at 308 nm has been investigated by Time-Resolved FTIR spectroscopy. The IR fluorescence from highly excited NO2(X2 A1) in ν1 vibrational mode has been observed. These excited states are resulted from the strong vibronic mixing of electronic excited A2 B2/B2 B1 states with the ground X2 A1 state. It is considered that symmetric stretching ν1 mode is reserved from the photolysis because its vibrational style is unsuitable for dissociation. 相似文献
12.
用高分辨、高速、高灵敏度的二极管激光探测法研究了高振动激发的NO2分子与NH3分子的振动能量转移,YAG532um倍频光作为NO2的激发光源,红外二极管激光(约10μ)探测NH3ν2模被激发振转能级的时间分辨的吸收光谱.实验得到NO2与NH3气压比为1:5,1:1,2:1和5:1时NH3(0100;7;k)的激发速率分别为9.28、6.42、5.05和3.65×10-1ms-1·Pa-1.在NH3压力为133Pa时,有大约6%的高振动激发NO2能量转移到NH3ν2振动模,其它大部分转移到NH3的转动和平动能.文中讨论了振动激发的机理. 相似文献
13.
近几年来 ,人们用李代数方法处理了许多问题 [1~ 5] ,在此基础上 ,我们利用动力学李代数方法研究了准线型四原子分子高激发振动态 ,把分子的 Hamiltonian展开成 Casimir算子与 Majorana算子之和[6,7] ,然后进行代数处理 ,从而得到了代数 Hamiltonian的本征值 .1 基本理论四原子分子有 3个键 ,所满足的对称群为 G=U1(4) U2 (4) U3 (4) ,处理分子问题时 ,一般要考Fig.1 The bond coordinates of fulminic acid(HCNO)虑键与键之间的耦合 ,为了方便 ,首先让键 1与键 2耦合 ,然后再与键 3耦合 (图 1 ) .这种耦合方式可记为 (1 2 ) 3 … 相似文献
14.
基于激发态电子占有率表达式和Frank-Condon 因子唯象公式, 当染料激发态振动能级单模振动频率为0.2 eV和TiO2纳晶半导体导带宽为1.4 eV时, 从理论上研究了取不同重组能、注入能级位置和初始振动波包时激发态振动能级间振动相干效应对光致电子转移速率的影响. 与文献的理论结果比较, 证实了唯象公式的合理性, 其相关修正参数分别为A=16, B=0.4735, C=0.1. 本文的工作将为进行光致电子转移速率的实验研究和染料敏化太阳能电池的应用研究提供理论基础和指导. 相似文献
15.
Adiabatic Potential Energy Surfaces and Photodissociation Mechanisms for Highly Excited States of H2O 下载免费PDF全文
Full-dimensional adiabatic potential energy surfaces of the electronic ground state \begin{document}$ \tilde X $\end{document} and nine excited states \begin{document}$ \tilde A $\end{document} , \begin{document}$ \tilde I $\end{document} , \begin{document}$ \tilde B $\end{document} , \begin{document}$ \tilde C $\end{document} , \begin{document}$ \tilde D $\end{document} , \begin{document}$ \tilde D' $\end{document} , \begin{document}$ \tilde D'' $\end{document} , \begin{document}$ \tilde E' $\end{document} and \begin{document}$ \tilde F $\end{document} of H\begin{document}$ _2 $\end{document} O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction. The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials. With a large selected active space and extra diffuse basis set to describe these Rydberg states, the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values. Compared with the well-investigated photodissociation of the first three low-lying states, both theoretical and experimental studies on higher states are still limited. In this work, we focus on all the three channels of the highly excited state, which are directly involved in the vacuum ultraviolet photodissociation of water. In particular, some conical intersections of \begin{document}$ \tilde D $\end{document} -\begin{document}$ \tilde E' $\end{document} , \begin{document}$ \tilde E' $\end{document} -\begin{document}$ \tilde F $\end{document} , \begin{document}$ \tilde A $\end{document} -\begin{document}$ \tilde I $\end{document} and \begin{document}$ \tilde I $\end{document} -\begin{document}$ \tilde C $\end{document} states are clearly illustrated for the first time based on the newly developed potential energy surfaces (PESs). The nonadiabatic dissociation pathways for these excited states are discussed in detail, which may shed light on the photodissociation mechanisms for these highly excited states. 相似文献
16.
JianHuaZHOU ShaoKunWANG ZhiJunYU HaiHuiJIANG YueShuGU 《中国化学快报》2003,14(12):1317-1320
Quasiclassical trajectory calculation (QCT) is used frequently for studying collisional energy transfer between highly vibrationally excited molecules and bath gases. In this paper, the QCT of the energy transfer between highly vibrationally excited C6F6 and N2 ,O2 and ground state C6F6 were performed. The results indicate that highly vibrationally excited C6F6 transferred vibrational energy to vibrational distribution of N2, O2 and ground state C6F6, so they are V-V energy transfer. Especially it is mainly V-V resonance energy transfer between excited C6F6 andground state C6F6, excited C6F6 transfers more vibrational energy to ground state C6F6 than to N2 and O2. The values of QCT, - (ΔEvib) of excited C6F6 are smaller than those of experiments. 相似文献