首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
DNA共价结合在化学修饰云母片上的AFM研究   总被引:4,自引:0,他引:4  
原子力显微镜(AFM)自1986年发明以来,已经成为生物学研究领域中的一个有效工具,尤其在核酸及其它生物大分子结构方面的应用已成为普遍关注的热点.原子力显微镜要求基底达到原子级平整,硅片和玻璃表面的起伏很大,因而原子级平整的云母具有重要的价值.  相似文献   

2.
研究用烃橡胶(SBR、PB)和聚二甲基硅氧烷(PDMS)分散α,ω-对乙氧羰氧基苯甲酸聚乙二醇酯(PEECB)而得到聚合物分散液晶复合膜(PDLCM).用这种复合膜进行富氧分离,当PEECB-4.05(4.05为聚醚软段的数均聚合度DP)的含量超过某一临界值(约23.0%wt)时,室温下SBR/PEECB-4.05/PDMS体系膜的氧气透过系数Po2值达70~634barrer),增加约60倍,分离系数仍较高(αo2/N2=3.47~2.59).考察了各种影响因素对膜透气性能的影响.  相似文献   

3.
AFM诱导正十八硫醇在金基底上的选择性生长   总被引:1,自引:0,他引:1  
扫描探针显微镜(SCCnningPF0boMICCOSCOPy,SPM)由于其极高的空间分辨能力和高度的可控性,已成为纳米尺度加工的有力工具[‘·’j.自Schneir等[’j报道原子级平整金基底的制备和用装备An针尖的扫描隧道显微镜(ScanningTunnelingMicroscoPy,STM)在基底上制备金纳米点以来,有关在All和HOPG等基底上制备由金点构成的任意图案的方法及用导电原子力显微镜(AtomicForceM卜roscopy,AFM)在HOPG和St基底上制备金点阵的工作已有许多报道[‘·’‘.用导电AFM和TaPPingmodeAFM”,’‘对St进行直接氧化可在其表面加…  相似文献   

4.
硅基多孔氧化铝膜的整体发光及其化学修饰   总被引:3,自引:0,他引:3  
杨阳  陈慧兰  鲍希茂 《化学学报》2003,61(3):320-324
利用电子束蒸发技术在硅衬底上沉积了500nm厚的铝膜,分别在硫酸、磷酸和 草酸中通过阳极氧化技基多孔氧化铝模板通过透射电镜(TEM)观测了形貌,并测 定了它们的光致发光光谱(PL).结果表明利用不同的酸性质得到的多孔氧化铝模 板的发光现象是不完全相同的.基于这种思路,采用了其它的酸性电解质磺基水杨 酸或在酸性电解质中预先加人有机荧光物质罗丹明6G,得到了不同发光特性的硅基 多孔氧化铝膜.结合过去的理论,对上述荧光光谱的来源以及变化进行了讨论.多 孔氧化铝的发光一般都来自于与氧空位有关的缺陷态F~+,但它的复合过程会受到 体系中质能级或其它发光物质的影响.来自电解质中的物质在阳极氧化的过程中会 参与氧化铝膜的形成,进而改变氧化铝膜的成分,并影响其发光过程.  相似文献   

5.
四硫富瓦烯衍生物/硬脂酸LB膜的表征   总被引:2,自引:0,他引:2  
研究了四(苄硫基)四硫富瓦烯/硬脂酸(TBT-TTF/SA)(1:1)LB膜、二(亚乙二硫基)四硫富瓦烯/硬脂酸(BEDT-TTF/SA)(1:1)LB膜和四(十六烷硫基)四硫富瓦烯/硬脂酸(THT-TTF/SA)(1:1)LB膜的结构.从X射线衍射结果得到了LB膜的层间距离.X射线衍射图显示了TBT-TTF/SALB膜和BEDT-TTF/SALB膜的层间结构由硬脂酸控制.从偏振红外结果计算出硬脂酸和四硫富瓦烯衍生物在LB膜中的取向角.根据分子取向角确定了LB膜的层间结构.用分子长度和分子取向角得到的层间距离与从X射线衍射得到的层间距离相吻合.  相似文献   

6.
李晶  汪尔康 《应用化学》1994,11(4):94-96
本文首次以LB技术将四苯基卟啉铜(CuTPP)分子沉积到高定向热解石墨上,并用STM研究其表面形貌,得到了原子级分辨的CuTPP分子的表面形貌图,结果表明,CuTPP分子具有近似圆状平面结构,分子直径为1.0nm,与理论结果十分吻合,结合STM原理,讨论了有机大分子STM成像的条件。  相似文献   

7.
梁勇  李全民 《分析化学》1998,26(8):1039-1039
1引言钒的分离方法很多,但利用三正辛胺(TOA)作为乳状液膜分离V(Ⅴ)的研究还未见报道。本文研究了以TOA为载体的乳状液膜迁移V(Ⅴ)行为及机理。试验表明:TOA-Span 80二甲苯乳状液膜体系能使V(Ⅴ)得到高效、快速、完全迁移,并能与常见离子得到完全分离。2实验部分2.1仪器与试剂721型分光光度计;pHS-2酸度计;高速搅拌制乳器(自制)。V(Ⅴ)标准溶液1.0g/L,TOA和Span80分别配成0.10mol/L和10%(W/V)二甲苯溶液,所用其他试剂均为分析纯。2.2乳状液膜的制…  相似文献   

8.
用等离子体增强化学气相沉积(PECVD)的方法,以固定的氢气(H2)流量和不同的硅烷(SiH4)和甲烷(CH4)流量比沉积了一系列的氢化非晶SiC(a-Si,C1-x-H)膜。用这种宽带隙的a-SixC1-x-H材料作为掺铒的基体材料,通过离子注入的方法得到掺铒的a-SixC1-x-H(a-SixC1-x-H:Er)膜。注入以后的样品经过不同温度的退火。用X射线光电子能谱(XPS)、红外吸收光谱(IR)、拉曼散射谱(Raman)等技术研究不同的SiH4/CH4流量比和退火温度对a-SixC1-x-H:Er发光强度的影响。结果表明,高温退火引起了膜中C的分凝,对饵的发光是不利的。通过低温和室温下铒发光强度的比较,表明这种材料具有较弱的温度猝灭效应。  相似文献   

9.
由聚马来酸杆和十八醇合成了一系列不同羧酯比的聚马来酸十八醇酯(PMA),并以其为成膜材料、CdCl2水溶液为亚相制备了一系列聚马来酸十八醇酯镉盐(CdPMA)LB膜.借助小角X射线衍射和红外吸收光谱表征了成膜条件及羧酯比对CdPMA膜有序结构的影响.在较高膜压(30mN/m)和快速提拉(10cm/min)条件下,低羧酯比的CdPMA可得到有序性很高的Y-型LB多层膜;高羧酯比的CdPMA得不到高有序性的LB多层膜.  相似文献   

10.
研究用烃橡胶和聚二甲基硅氧烷分散α、ω-对乙氧羰氧基苯甲酸聚乙二醇酯而得到聚合物分散液晶复合膜。用这种复合膜进行富氧分离,当PEECB-4.05(4.05为聚醚软段的数均聚合度DP)的含量超过某一临界值(约23.0%wt)时,室温下SBR/PEECB-4.05/PDMS体系膜的氧气透过系数PO2值达70-634barrer),增加约60倍,分离系数仍较高。考察了各种影响因素对膜透气性能的影响。  相似文献   

11.
In this work, a water-soluble gold nanoparticle-encapsulated polyaniline nanocomposite (AuNP-PANI) was prepared in the presence of an ionic surfactant such as cetyltrimethylammonium bromide (CTAB) using versatile two steps method. The prepared nanoparticles (AuNPs) were characterized by UV–Visible spectroscopy, Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). The nanocomposite (AuNP-PANI) were initially characterized using UV–Visible spectroscopy, Transmission Electron Microscope (TEM), Scanning Transmission Electron Microscope (STEM) and DLS. The structure and composition of AuNP-PANI further characterized using Fourier Transmission Infrared Spectroscopy (FTIR), X-ray diffraction study (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and Thermogravimetric analysis (TGA). Electrochemical properties of AuNP-PANI were studied using Cyclic Voltammetry (CV). The prepared nanocomposite exhibited good surface enhanced Raman scattering (SERS) of 4-amino thiophenol (4-ATP) and 4- (dimethyl amino) pyridine (4-DMAP) for which the enhancement factor (EF) were found to be1.95 × 105 and 2.016 × 105, respectively. The nanocomposite also showed excellent catalytic activity for the chemical degradation of Congo red (CR) and methylene blue (MB) as evidenced from the calculated rate constants which were determined to be 0.30 s−1 and 0.33 s−1, respectively.  相似文献   

12.
A novel method for covalent attachment of ultrathin silica films (thickness <10 nm) to gold substrates is reported. Silica layers were prepared using spin-coating of sol-gel precursor solutions onto gold substrates that were cleaned and oxidized using UV photo-oxidation in an ozone atmosphere. The gold oxide layer resulting from this process acts as a wetting control and adhesive agent for the ultrathin silica layer. Control of silica layer thickness between approximately 6 and 60 nm through modification of precursor solution composition or by repetitive deposition is demonstrated. Films were characterized using infrared spectroscopy, ellipsometry, atomic force microscopy, and cyclic voltammetry. For the standard deposition parameters developed here, films were determined to be 5.5 +/- 0.75 nm thick, and were stable in aqueous solutions ranging in pH from 2 to 10 for at least 30 min. Films contained nanoscopic defects with radii of 相似文献   

13.
This study reports the first new approach of using nitrogen functionalized carbon dots coated on zinc oxide nanoparticles (N-CDs/ZnONPs) as a novel nanocomposite for latent fingerprint detection using the powder brushing method. N-CDs/ZnONPs nanocomposite was prepared using melamine, potato peel waste and zinc acetate dehydrate as precursors. This nanocomposite was characterized by Fourier-transform infrared spectroscopy, UV–Visible spectroscopy, Fluorescence spectroscopy, X-ray diffraction, Raman spectroscopy, Zeta nanosizer, Scanning Electron Microscope, Energy-Dispersive X-ray Spectrometry and Transmission Electron Microscopy. The size of N-CDs was around at 50–20 nm and ZnONPs was around at 40–50 nm. The quantum yield of N-CDs increased the fluorescence intensity of the fluorophore by 5.54%. The N-CDs were coated on surface of ZnONPs to increase the quantum yield and increase the blue emission after formation of N-CDs/ZnONPs by 5.12%.The N-CDs/ZnONPs nanocomposite demonstrated extraordinary sensitivity and selectivity for Latent Fingerprint (LPF) detection on the distinctive non-porous substrates which included aluminum foil, aluminum sheets, an aluminum rod, an iron disc, a compact disc, a black mat, white marble and magazine paper. This nanocomposite acts as a labeling agent and it helped to detect LFP with clear readability ridges and high contrast fingerprint images under UV light irradiation. N-CDs/ZnONPs nanocomposite additionally demonstrated superior ability to reveal readability ridges and clarity and high contrast LFP images with 415 nm and 450 nm light sources and a yellow filter by using a Living Image Microscope. This nanocomposite exhibited advantages such as improved efficiency, a non-toxic nature, good optical properties and good results in the LFP detection of the freshly applied fingerprints. N-CDs/ZnONPs nanocomposite is, therefore, a good alternative material for detection of latent fingerprints in crime investigations.  相似文献   

14.
Uniform arrays of coarse and smooth gold nanoparticles with diameter about 130 nm were successfully synthesized through seed-mediated growth method, separately. Scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD) have been used to study the formation and structure of the nanocomposites. The high enhancement factor for surface-enhanced Raman scattering of coarse and smooth gold nanoparticles were estimated to be about 3.1 × 106 and 2.0 × 106, respectively. It is evident that the coarse gold nanostructures has higher influence factor than the smooth gold nanostructures. Therefore, these unique properties of the coarse Au nanoparticles appear to be very promising for applications as high-performance SERS substrates.  相似文献   

15.
A method is advanced for preparing gold nanoparticles (NPs) at 50°C in aqueous acrylamide (AAm), which has the dual function of a reducing agent for HAuCl4 and a protective ligand for NPs. Nanoparticles have gold cores with the average size dAu = 20.9 ± 3.6 nm. The growth kinetics of NPs has been studied. Films of NPs have been produced on glass, silica, silicon, and polyethylene terephthalate (PET) substrates. The NPs and films have been characterized by UV-Vis and IR spectroscopy, X-ray powder diffraction, transmission and scanning electron microscopy, and atomic-force microscopy.  相似文献   

16.
通过浸渍法制备了一系列负载0.5%(重量百分比)Pd的氧化铈-氧化锆(NDK-84,由日本新日本电工株式会社提供)催化剂材料,并通过全面的表征手段,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、元素分布、X-射线衍射(XRD),氮气吸脱附测试与比表面积和孔径分布分析(BET)、X射线光电子能谱(XPS)等,研究了不同Pd前驱体和不同热老化处理条件、H2还原条件对Pd在铈锆固溶体上的分散、生长与烧结行为的影响,并评估了它们的三效催化活性.结果表明,热老化处理过程与还原过程显著影响了Pd在氧化物载体表面上的分散,因此导致不同的催化活性.  相似文献   

17.
Based on a facile and universal method using noncovalent bonding, here, polymer-modified covalent organic framework materials (COFs) were rapidly prepared. PNIPAM-modified COF (COF-PNIPAM) was synthesized by electrostatic self-assembly between COF prepared by low-cost melamine and terephthalaldehyde and carboxyl-terminated poly(N-isopropylacrylamide) (PNIPAM) prepared via reversible addition-fragmentation chain transfer polymerization. The carboxyl-terminated PNIPAM was characterized by Gel Permeation Chromatography and Ultraviolet and Visible Spectroscopy (UV–vis). COF and COF-PNIPAM were characterized by Fourier Transform Infrared Spectroscopes, Scanning Electron Microscope, Transmission Electron Microscope, X-Ray Diffractomer (XRD), and Brunner-Emmet-Teller (BET) measurements. The results showed that the COF-PNIPAM was successfully prepared. The Pickering emulsion properties of the COF-PNIPAM in a water-to-toluene mixed system were studied, and when the water-to-oil ratio is 2:1, a stable emulsion can be obtained. However, the results show that the PNIPAM chains of COF-PNIPAM nearly lose their temperature responsiveness.  相似文献   

18.
This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted with colloidal suspension of gold metal nanoparticles: respectively, the functional groups SH and NH2 bound gold nanoparticles. Gold nanoparticles were prepared by the chemical reduction of HAuCl4 using sodium tricitrate and immobilized onto silanized quartz substrates. Active substrate surface morphology was characterized with scanning electron microscopy (SEM) measurements and gold nanoparticles presented a diameter in the range 40-100 nm. Colloidal hydrophobic films, allowing nonpolar molecule pre-concentration, were obtained. The surfaces exhibit strong enhancement of Raman scattering from molecules adsorbed on the films. Spectra were recorded for two PAHs, naphthalene and pyrene, in artificial sea-water (ASW) with limits of detection (LODs) of 10 ppb for both on MPMS silanized substrates.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

20.
Saute B  Narayanan R 《The Analyst》2011,136(3):527-532
We report the use of two different sizes of dogbone shaped gold nanoparticles as colloidal substrates for surface enhanced Raman spectroscopy (SERS) based detection of ultra-low levels of thiram, a dithiocarbamate fungicide. We demonstrate the ability to use a solution based, direct readout SERS method as a quantitative tool for the detection of ultra-low levels of thiram. The two different sizes of dogbone shaped gold nanoparticles are synthesized by using the seed-mediated growth method and characterized by using UV-visible spectroscopy and transmission electron microscopy (TEM). The smaller dogbone shaped nanoparticles have an average size of 43 ± 13 nm. The larger dogbone shaped gold nanoparticles have an average size of 65 ± 15 nm. The nanoparticle concentration is 1.25 × 10(11) nanoparticles per mL for the smaller dogbone shaped gold nanoparticles and is 1.13 × 10(11) nanoparticles per mL for the larger dogbone shaped gold nanoparticles. Different concentrations of thiram are allowed to bind to the two different sizes of dogbone shaped gold nanoparticles and the SERS spectra are obtained. From the calibration curve, the limit of detection for thiram is 43.9 ± 6.2 nM when the smaller dogbone shaped gold nanoparticles are used as colloidal SERS substrates In the case of the larger dogbone shaped gold nanoparticles, the limit of detection for thiram is 11.8 ± 3.2 nM. The lower limit of detection obtained by using the larger dogbone shaped gold nanoparticles as colloidal substrates is due to the lightning rod effect, higher contributions from the electromagnetic enhancement effect, and larger number of surface sites for thiram to bind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号