首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La1–xAgxMnO3 ± y (x = 0-0.3) mixed oxides have been synthesized by the pyrolysis of polymer–salt compositions using different organic compounds and different salt: organic compound ratios. The correlation between the reaction medium temperature during pyrolysis, the composition of the resulting oxide, and synthesis conditions has been investigated. The effect of these conditions on the character of the pyrolysis process, on the phase composition and microstructure of the resulting oxide particles and metallic silver, and on their mutual distribution is reported. The catalytic properties of the synthesized oxides in methane and soot oxidation are considered, and a correlation is established between the catalytic activity of the oxides and the synthesis conditions.  相似文献   

2.
The densities of aqueous solutions of Me4NBr, Et4NBr, Bu4NBr, and Et(OH)3EtNBr were measured in the concentration range 0.002 to 0.05 mol⋅kg−1. The temperature of the determinations ranged from 275.15 to 279.15 K in 0.5 K steps, and the uncertainty of the densities was around ±1×10−6 g⋅cm−3. Eleven concentrations were used for each of the salts. It was found that all the solutes follow Despretz’ law. The absolute value of the Despretz’s constants increases with increasing number of carbon atoms in the cation, except for Et(OH)3EtNBr which has the highest value. The ionic contributions to the Despretz’s constants were calculated. The volumetric data obtained allows the calculation proposed by Kalgud and Pokale. The effective ionic radii were calculated using a semi-empirical equation, as proposed previously by several workers. The nonlinearity of the plot of the ionic Despretz constants versus effective ionic radius is confirmed.  相似文献   

3.
Composite powders of the CdS–Na2SiO3(SiO2) type were synthesized. It was found that varying the amount of Na2SiO3 introduced in the synthesis stage affects both the texture characteristics of the powders obtained and their optical and photocatalytic properties. All the powders absorb electromagnetic radiation in the visible spectral range (~420–620 nm). It was shown for the example of photodestruction of Nile Blue and Rhodamine C dyes that the powders exhibit good photocatalytic properties under exposure to visible light (λ ≥ 410 nm). One of important advantages of the composites used as photocatalysts is that the transfer of cadmium ions under photoirradiation, characteristic of CdS particles, does not occur.  相似文献   

4.
The quinary reciprocal system Li, K || F, Br, MoO4, WO4 was partitioned into simplexes using graph theory by writing an adjacency matrix and solving a logical expression. A tree of phases of the system was constructed. The tree of phases has a linear structure and consists of four stable partitioning tetrahedra, two stable pentatopes, and three stable hexatopes. In the quinary reciprocal system Li, K || F, Br, MoO4, WO4, crystallizing phases were predicted. The stable tetrahedron LiF–KBr–Li2MoO4–Li2WO4 of the quinary reciprocal system Li, K || F, Br, MoO4, WO4 was studied by differential thermal analysis and X-ray powder diffraction. There are no invariant equilibrium points in the tetrahedron. Continuous series of solid solutions Li2MoxW1–xO4 do not decompose.  相似文献   

5.
The differentiation of the quaternary reciprocal system Li, K, Ca, Ba||F, WO4 was performed based on the graph theory using special software. Stable and metastable complexes of the system were found using a matrix of reciprocal pairs of salts. For the first time, by a set of physicochemical analysis methods (differential thermal, visual polythermal, and X-ray powder diffraction analyses), based on the method of thermal analysis of successive projections of the composition polytope, the quaternary system LiF–K2WO4–CaF2–BaF2–BaWO4, which is a stable complex of the quaternary reciprocal system Li, K, Ca, Ba||F, WO4, was studied and the coordinates of invariant points were determined.  相似文献   

6.
The phase equilibria of the Ag–Bi–Te–I system in the part AgI–Bi–Bi2Te3–BiTeI is studied in the interval of 500–540 K by means of physicochemical analysis. Thermodynamic properties of phases are determined via EMF. Potential-forming processes occur in electrochemical cells (ECCs) of the C|Ag|glass Ag3GeS3I|D|C structure (where C denotes inert (graphite) electrodes; Ag, D denotes ECC electrodes; D denotes four-phase alloys of the AgI–Bi–Bi2Te3–BiTeI system; and Ag3GeS3I glass is the selective Ag+ conducting membrane). Linear dependences of the EMFs of cells Е(Т) in the interval of 505–535 K are used to calculate the values of the thermodynamic functions of BiTeI, Bi2TeI, and Bi4TeI1.25 phases saturated over silver.  相似文献   

7.
Four structural models of volborthite Cu3(OH)2(V2O7)·2H2O (a = 10.646(2) Å, b = 5.867(1) Å, c = 14.432(2) Å, β = 95.19(1)°, V = 897.7(5) Å3, Z = 4, R/R w = 0.038/0.046) calculated in the space groups determined from the systematic absences are compared. Based on the structure balance and the similarity of constituting polyhedra, values of the R factor, and isotropic thermal parameters, the space group Ia is found to be preferable, which is the only possible asymmetric and uniform variant. Hydrogen atoms of OH-groups, oxygen atoms and, partially, hydrogen atoms of water are localized.  相似文献   

8.
Phase equilibria in the stable tetrahedron LiVO3–Li2MoO4–KBr–LiKMoO4 of the quaternary reciprocal system Li,K∥Br,VO3,MoO4 were studied by differential thermal analysis. The composition (mol %) and melting point of the alloy corresponding to a quaternary eutectic were determined: (24.2% LiVO3, 10.4% Li2MoO4, 13.5% KBr, 51.9% LiKMoO4, 407°С).  相似文献   

9.
Single crystals of bismuth oxoborate Bi4B2O9 have been grown by slowly cooling the melt of a stoichiometric Bi2O3 + H3BO3 mixture. The structure of the borate (monoclinic space group P21/c, a = 11.107 Å, b = 6.629 Å, c = 11.044 Å, β = 91.04°, Z = 4) has been studied at 20, 200, and 450°C. The structure is described not only in terms of full BiO6 ? and BiO7 polyhedra but also in terms of truncated BiO3 ? and BiO4 ? polyhedra and BO3 triangles, as well as oxo-centered OBi3 triangles and OBi4 tetrahedra. It is shown that both the B-O and Bi-O bond lengths are practically unaffected by temperature. Only the angles between polyhedra change with temperature, being responsible for the strong anisotropy of Bi4B2O6 thermal expansion, which was measured by high-temperature powder X-ray diffraction: α11 = 20, α22 = 15, α33 = 6 × 10?6 °C?1, and μ = (c, α33) = ?19°.  相似文献   

10.
A series of oxides La2 - x Ca x Zr2O7–α (x = 0.00, 0.05, 0.10, 0.15, 0.20) is synthesized. It is found that in samples with the calcium content x = 0.15, 0.20, the second phase Ca0.9La0.2Zr0.9O3 is present in the fraction increasing with the increase in x. The solubility limit of calcium to form solid solutions based on La2Zr2O7 corresponds to x = 0.1. By high-temperature gravimetry, the proton concentration in La1.95Са0.05Zr2O7–α is obtained as a function of temperature in the interval of 300–950°С in Н2О–О2 atmosphere. According to temperature programmed desorption studies, in the temperature range of 400–900°С at least two types of OH defects with different binding energies are present in the oxide lattice. The temperature dependences of conductivity are obtained for La1.95Са0.05Zr2O7–α in dry and humid air atmosphere in the temperature range of 350–800°С by the method of impedance spectroscopy. The electrolyte conductivity in humid air is shown to substantially exceed the corresponding values in dry air, which can be associated with manifestation of protonic conductivity in humid atmosphere. The dependences of oxide conductivity on the oxygen content in the gas phase are determined. The conductivity is divided into its ionic and hole components.  相似文献   

11.
The formation conditions and physicochemical properties of binary decavanadates M4Na2V10O28 · 10H2O (M=K, Rb, NH4), synthesized by crystallization from saturated solutions of the NaVO3-MH2AsO4-H2O systems, were studied by chemical analysis, X-ray powder diffraction, microscopy, thermogravimetry, and IR spectroscopy. To optimize the synthesis conditions of M4Na2V10O28 · 10H2O, the ( 1-x)NaVO3 · 2H2O · xMH2AsO4-H2O (0.2 ≤ x ≤ 0.8) isomolar series method was applied to studying the interaction in the NaVO3-MH2AsO4-H2O systems (M = K, Rb, Cs) at the 0.4 mol/L total molar concentration of NaVO3 and MH2AsO4 in solutions. The studied M4Na2V10O28 · 10H2O compounds were shown to be isostructural with triclinic crystals (Z= 1, space group P $ \bar 1 $ \bar 1 ), and their unit cell parameters were estimated.  相似文献   

12.
Compact CaZr0.9Y0.1O3–δ (CZY) film on a porous SrTi0.8Fe0.2O3–δ (STF) support is obtained using the technique of deposition from solutions of inorganic salts in ethanol. According to the data of scanning electron microscopy (SEM), the film has a nanoporous granular structure with the grain size of 0.2 to 1 μm. The thickness of the CZY film on the STF support is about 3 μm after 15-fold solution application. The results of studying the elemental composition showed that elements of the support diffuse into the film in the course of synthesis. Analysis of the data of impedance spectroscopy shows that conductivity of the CZY film is limited the grain bulk. It is assumed that the comparatively low conductivity activation energy of the film (50.3 kJ/mol) is due to diffusion of elements of the STF support that results in variation of the film composition and properties.  相似文献   

13.
Sodium aluminophosphate samples with composition 43.8Na2O12.5Al2O343.8P2O5 were prepared by the sol–gel route using different precursors and working in different pH ranges from pH < 1 up to pH > 10. The structures of the gels and of the corresponding glasses were investigated by solid state NMR and compared to that of a glass with the same composition prepared by a traditional melting process. In addition to bulk materials, thin films were deposited by dip coating on silica glasses. Applying secondary neutral mass spectrometry (SNMS), the expected elements and residual carbon were identified. The surfaces of the coatings and fracture surfaces of bulk material were investigated using atomic force microscopy (AFM). Solid state NMR revealed that samples prepared via a lactate route exhibited local Al and P environments closest to that of the melt-prepared glass, with the highest extent of Al-O-P connectivity.  相似文献   

14.
The stable tetrahedron LiF–KI–K2CrO4–Li2CrO4 of the quaternary reciprocal system Li, K||F, I, CrO4 was experimentally studied by differential thermal analysis. The compositions and melting points of mixtures of components at two eutectic points were determined. Based on experimental data, a Txyz model of the phase complex was constructed, which allows one to solve problems of building polythermal and isothermal sections. A method for constructing the diagram of material balance of equilibrium phases for a given composition was developed. The diagram enables one to find the ratio between the amounts of the liquid and solid phases at constant temperature and also monitor the change in the composition of the phases within a chosen temperature range.  相似文献   

15.
The thermal desorption of CO, H2, and CH3OH from the surface of Katalco-58 industrial catalyst for the synthesis of methanol and γ-Al2O3 was studied. Weak interaction of the gases with the surface of samples was observed over the temperature range 75–400°C. The desorption of the gases obeyed the second-order Wigner-Polyani equation. The desorption energies of the gases were calculated. The mechanism of dimethyl ether synthesis was studied.  相似文献   

16.
The crystal structure of tripotassium trisaccharinate dihydrate, K3(C7H4NO3S)3·2H2O, is triclic, space group\(P \bar 1, Z = 2\). It consists of three crystallographically independent potassium and saccharinato ions as well as two structurally different water molecules. Potassium coordination polyhedra are irregular, with K1 and K3 six-coordinated and the third one K2 seven-coordinated. The K?O distances range from 2.652(9) to 3.100(2) Å(mean: 2.790 Å) whereas the K?N distance is 3.025(3) Å. The water molecules W2 is disordered over three positions with occupancies of approximately 0.6, 0.2 and 0.2. The hydrogen atom (H1W1) of the ordered water molecule (O1W) is hydrogen bonded to the sulfonyl oxygen atom (O11) (R(O...O)=2.976(3) Å), whereas the other hydrogen atom (H2W1) is bifurcated to the carbonyl oxygen atom (O13) (R(O...O)=2.851(3) Å) and the disordered water molecules (O23W) (R(O...O)=3.067(12) Å). The carbonyl oxygens (O13, O23 and O33) and one of the disordered water molecules (O22W) are involved in C?H...O hydrogen bonds (R(C?H...O)=3.027(4)–3.304(9) Å). Structural characteristics of the studied compound are compared with the analogous trisodium trisaccharinate dihydrate and dipotassium sodium trisaccharinate monohydrate. Infrared and Raman spectra of the title compound have been analyzed in relation to the structure, and compared with the spectra of trisodium trisaccharinate dihydrate.  相似文献   

17.
The effect of the radius of the alkali-earth cation substituted into the A sublattice of La0.5A0.5Mn0.5Ti0.5O3–δ (А = Са, Sr, Ba) perovskites on their stability and transport and thermomechanical properties is considered. The increase in the cation radius is shown to improve the phase stability and decrease the conductivity under both oxidative and reductive conditions. The thermal and chemical expansion of La0.5A0.5Mn0.5Ti0.5O3–δ ceramics is studied by dilatometry in controlled atmospheres and a wide temperature range at p(O2)=10–21–0.21 atm. The coefficients of thermal expansion of La0.5A0.5Mn0.5Ti0.5O3–δ are in the interval of (10.7–14.3)× 10–6 K–1, i.e., compatible with those of standard solid electrolytes of solid-oxide fuel cells. The maximum chemical expansion does not exceed 0.2% at isothermal reduction in the CO?CO2 mixture.  相似文献   

18.
Nb-doped BaWO4 with the assumed formula BaW1?xNbxO4?δ (x = 0, 0.005, 0.01, 0.02 and 0.05) were prepared by solid-state reaction method. Crystal structure and phase composition were determined by X-ray diffraction method. Scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry (EDS) was used to describe microstructure and chemical composition of synthesised materials. It was found that solubility limit of niobium in the BaWO4 structure is the range 0.5–1 mol%, as formation of second phase—Ba5Nb4O15—was observed for samples with higher dopant content. For evaluation of the chemical stability of synthesized materials, the comparative CO2/H2O exposure test was performed. Samples were exposed to carbon dioxide- and water vapour-rich atmosphere (7% CO2 in air, 100% RH) at 298 K for 700 h. During this exposition, the chemical reactions between the samples and the surrounding gaseous atmosphere resulting in formation of barium hydroxide and/or barium carbonate can process. Thermogravimetry (TG) method was used for chemical stability evaluation. The comparison of samples before and after the CO2/H2O exposure test was performed. To support the interpretation of TG results, the analysis of gaseous products evolved during thermal treatment of the samples was done using mass spectrometer. The effect of dopant on the BaWO4 chemical stability improvement was observed. In order to determine the electrical properties of obtained materials, the DC resistance measurements in synthetic air atmosphere were taken. It was shown that niobium doping and the presence of second phase—Ba5Nb4O15—leads to an increase in the total conductivity of synthesised materials.  相似文献   

19.
The cutting tetrahedron LiVO3–KBr–KVO3–LiKMoO4 of the quinary reciprocal system Li, K||F, Br, VO3, MoO4 was studied by differential thermal analysis. The composition and melting point of the alloy corresponding to a quaternary eutectic were determined (11.3 mol % LiVO3, 18.0 mol % KBr, 57.0 mol % KVO3, 13.7 mol % Li2MoO4 + K2MoO4, 318°С).  相似文献   

20.
Low-agglomerated xerogels, ultrafine oxide powders with particle sizes of 12–20 nm, and uniform thin films with particle sizes of 8–14 nm are prepared in the CeO2–Y2O3 system using liquid-phase low-temperature methods, namely via coprecipitation of hydroxides and cocrystallization of salts, sol—gel technology. A comparative characterization of the prepared xerogels and nanopowders is performed using a set of physicochemical analytical methods. A dependence of phase composition, microstructure, and particle size on synthetic parameters is elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号