首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Cu(NO3)2.3H2O with the ligand 1-(ferrocenemethyl)-1,4,7,10-tetraazacyclododecane (L) in acetonitrile leads to the formation of a blue complex, [Cu(L)(NO3)][NO3] (C1). The X-ray structure determination shows an unexpected binding of a nitrate anion in that the CuII center is surrounded by four N atoms of the 1,4,7,10-tetraazacyclododecane (cyclen) macrocycle and two O atoms from a chelating nitrate anion, both Cu-O distances being below the sums of the van de Waals radii. Hydrogen-bonding interactions in the crystal lattice and a weak interaction between a second nitrate O and the CuII center in C1 give rise to a highly distorted CuII geometry relative to that found in the known structure of [Cu(cyclen)(NO3)][NO3] (C5). Electrochemical studies in acetonitrile containing 0.1 M [Bu4N][NO3] as the supporting electrolyte showed that oxidation of C1 in this medium exhibits a single reversible one-electron step with a formal potential E degrees f of +85 mV vs Fc0/+ (Fc = ferrocene). This process is associated with oxidation of the ferrocenyl pendant group. Additionally, a reversible one-electron reduction reaction with an E degrees f value of -932 mV vs Fc0/+, attributed to the CuII/I redox couple, is detected. Gradual change of the supporting electrolyte from 0.1 M [Bu4N][NO3] to the poorly coordinating [Bu4N][PF6] electrolyte, at constant ionic strength, led to a positive potential shift in E degrees f values by +107 and +39 mV for the CuII/I(C1) and Fc0/+(C1) redox couples, respectively. Analysis of these electrochemical data and UV-vis spectra is consistent with the probable presence of the complexes C1, [Cu(L)(CH3CN)2]2+ (C2), [Cu(L)(CH3CN)(NO3)]+ (C3), and [Cu(L)(NO3)2] (C4) as the major species in nitrate-containing acetonitrile solutions. In weakly solvating nitromethane, the extent of nitrate complexation remains significant even at low nitrate concentrations, due to the lack of solvent competition.  相似文献   

2.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

3.
Two fluorescent ligands, N-(2-(5-cyanopyridyl))cyclen (L5) and N-(2-pyridyl)cyclen (L6) (cyclen = 1,4,7,10-tetraazacyclododecane), were designed and synthesized to control twisted intramolecular charge transfer (TICT) by metal chelation in aqueous solution. By complexation with Zn(2+), L6 exhibited TICT emissions at 430 nm (excitation at 270 nm) in 10 mM HEPES (pH 7.0) with I = 0.1 (NaNO(3)) at 25 degrees C due to the perpendicular conformation of a pyridine ring with respect to a dialkylamino group, which was fixed by Zn(2+)-N(pyridine) coordination, as proven by potentiometric pH, UV, and fluorescence titrations and X-ray crystal structure analysis. We further describe that the 1:1 complexation of ZnL6 with guests such as succinimide, phosphates, thiolates, and dicarboxylates, which compete with a nitrogen in the pyridine ring for Zn(2+) in ZnL6, induces considerable emission shift from TICT emissions (at 430 nm) to locally excited emissions (at ca. 350 nm) in neutral aqueous solution at 25 degrees C.  相似文献   

4.
We have found the first well-characterized coordination of guanidine with Zn(2+) in a 1:1 complex (ZnL(1)) with cyclen (= 1,4,7,10-tetraazacyclododecane) functionalized with guanidinylethyl group (L(1) = (2-guanidinyl)ethyl-cyclen). The X-ray structure analysis of the 1:1 complex crystallized at pH 7.5 revealed an apical coordination of the pendant guanidinyl group to Zn(2+) ion in ZnL(1). By potentiometrtic pH titration, initial formation of a 1:1 Zn(L(1).H(+)) complex was indicated, where only the cyclen N's bind to Zn(2+) with the complexation constant, log K(s) (K(s) = [Zn(L(1).H(+))]/[Zn(2+)][L(1).H(+)] (M(-1))), being 12.4 +/- 0.1. Facile deprotonation of the guanidinium pendant in the Zn(L(1).H(+)) occurred with a pK(a) value of 5.9 +/- 0.1 at 25 degrees C with I = 0.1 (NaNO(3)) to yield the guanidine-coordinating complex ZnL(1). 4-Nitrophenyl phosphate dianion (NPP(2-)) interacted with ZnL(1) through a new Zn(2+)-phosphate coordination, as indicated by (31)P NMR titration and potentiometric pH titration. An apparent complexation constant for this new species, log K(app)(Zn(L(1).H(+))-NPP), was 4.0 +/- 0.1, which is larger than the log K(app)(ZnL(2)-NPP) value of 3.1 for the 1:1 complex of Zn(2+)-cyclen (ZnL(2)) with NPP at the common pH 5.6. The interaction of ZnL(1) with a phosphate dianion was proven by the X-ray crystal structure analysis of the 1:1 ZnL(1)-PP(2-) complex (PP(2-) is a dianion of phenyl phosphate) obtained from an aqueous solution at pH 6.5. At higher pH, the pendant guanidinium cation is deprotonated to displace the phosphate to yield the Zn(2+)-guanidine bond.  相似文献   

5.
The infrared spectra, elemental and thermal (TG/DTG and DTA) analyses of novel [Zn(cyclen-κ4N1,4,7,10)(HGly-κ2O,O')](ClO4)2 (1), and [Zn2(cyclen-κ4N1,4,7,10)2(μ-S-Ala-κ2N,O)](ClO4)(3)·2H2O (2) complexes (cyclen - 1,4,7,10-tetraazacyclododecane) were recorded and analyzed in the relation to their structural peculiarities. IR spectral data indicate both mono- or bidentate coordination mode of a carboxylate group in the prepared complexes (at pH≈9). The results indicate unusual bidentate carboxylate coordination mode (in complex (1)) toward to Zn2+-cyclen unit. Therefore the crystal structure determination of the crystalline complex [Zn(cyclen-κ4N1,4,7,10)(NO3-κ2O,O')](NO3) was attached in order to support the coordination mode assignment in complex (1).  相似文献   

6.
Kimura E  Gotoh T  Aoki S  Shiro M 《Inorganic chemistry》2002,41(12):3239-3248
To elucidate intrinsic recognition of carboxamides by zinc(II) in carbonic anhydrase (CA) (as inhibitors) and carboxypeptidase A (CPA) (as substrates), a new series of Zn(2+)-carboxamide-appended cyclen complexes have been synthesized and characterized (cyclen = 1,4,7,10-tetraazacyclododecane). Two types of Zn(2+)-carboxamide interactions have been found. In the first case represented by a zinc(II) complex of carbamoylmethyl-1,4,7,10-tetraazacyclododecane (L(1)), the amide oxygen binds to zinc(II) at slightly acidic pH (to form ZnL(1)), and the deprotonated amide N(-) binds to zinc(II) at alkaline pH (to form ZnH(-1)L(1)) with pK(a) = 8.59 at 25 degrees C and I = 0.1 (NaNO(3)), as determined by potentiometric pH titrations, infrared spectral changes, and (13)C and (1)H NMR titrations. The X-ray crystal structure of ZnH(-1)L(3) (where L(3) = N-(4-nitrophenyl)carbamoylmethyl cyclen, pK(a) = 7.01 for ZnL(3) <==> ZnH(-1)L(3)) proved that the zinc(II) binds to the amidate N(-) (Zn-N(-) distance of 1.974(3) A) along with the four nitrogen atoms of cyclen (average Zn-N distance 2.136 A). Crystal data: monoclinic, space group P2(1)/n (No. 14) with a = 10.838(1) A, b = 17.210(2) A, c = 12.113(2) A, b = 107.38(1) degrees, V = 2156.2(5) A(3), Z = 4, R = 0.042, and R(w) = 0.038. These model studies provide the first chemical support that carboxamides are CA(-) inhibitors by occupying the active Zn(2+) site both in acidic and alkaline pH to prevent the occurrence of the catalytically active Zn(2+)-OH(-) species. In the second case represented by a zinc(II) complex of 1-(N-acetyl)aminoethylcyclen, ZnL(6), the pendant amide oxygen had little interaction with zinc(II) at acidic pH. At alkaline pH, the monodeprotonation yielded a zinc(II)-bound hydroxide species ZnL(6)(OH(-)) (pK(a) = 7.64) with the amide pendant remaining intact. The ZnL(6)(OH(-)) species showed the same nucleophilic activity as Zn(2+)-cyclen-OH(-). The second case may mimic the Zn(2+)-OH(-) mechanism of CPA, where the nucleophilic Zn(2+)-OH(-) species does not act as a base to deprotonate a proximate amide.  相似文献   

7.
The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound zinc(II) complex is pointed into the major groove, and there are interactions with the guanine positioned 5' to the thymine bulge.  相似文献   

8.
Novel calix[4]arene derivatives constrained in the cone or 1,3-alternate conformations, bearing one or two cyclen (1,4,7,10-tetraazacyclododecane) moieties directly connected to the upper rim, have been synthesized using Buchwald-Hartwig coupling reaction. The complexation ability and hydrolytic activities of selected Zn(II) complexes of these calixarenes were studied. Although the attempts to hydrolyze activated phosphodiester bonds were unsuccessful, the NMR titration experiments revealed binding affinity for chloride, acetate, and benzoate anions in defined stoichiometry.  相似文献   

9.
An ensemble sensor system that exhibited selective luminescence enhancement upon binding to thymidine 5'-triphosphate (TTP) in HEPES buffer over other nucleotides was developed. The ensemble system consisted of an energy acceptor (FIrpic-bis(Zn2+-dipicolylamine conjugate, FIrpic=bis[(4,6-difluorophenyl)-pyridinato-N,C2+]picolinate) derivative) and an energy donor (mCP-Zn2+-cyclen, mCP=N,N'-dicarbazolyl-3,5-benzene). Among the nucleotides, the selective recognition and luminescence enhancement for TTP was achieved by the strong binding of the thymine unit to Zn2+-cyclen (cyclen=1,4,7,10-tetraazacyclododecane) and intermolecular energy transfer between the mCP and FIrpic moieties.  相似文献   

10.
The synthesis of cis-[Ru(II)(cyclen)(L)(x)](n+) (cyclen = 1,4,7,10-tetraazacyclododecane and L = 2,2'-bipyridine (bpy), phenanthroline (phen) or 4-cyanopyridinium (4-NCpyH(+))) is reported. The freshly prepared complexes are stable in aprotic solvents and cyclen undergoes oxidative dehydrogenation reaction at high pH. These compounds also present solvent dependent conformational isomerization.  相似文献   

11.
The [CuL](ClO4)2 complex, L=1,4,7,10-tetrakis- (2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane, was prepared in EtOH and characterized. The crystal structure of the complex was determined by single-crystal X-ray analysis. The coordination geometry about the copper ion can be described as a strongly distorted octahedron, with CuN distances ranging from 2.01(1)–2.82(1)AÅ.  相似文献   

12.
Three new azamacrocyclic-cyclophane hybrid receptors L(1), L(2), and L(3) have been synthesized that incorporate either 1,4,7,10-tetraazacyclododecane (cyclen) or 1,4,7-triazacyclononane (tacn) unit(s) tethered via a short amidic spacer to an electron donor and a H-bonding crown ether polycycle. The crown ether is designed to act as a host toward biologically relevant guests, whereas the macrocycle can coordinate a zinc(II) or a copper(II) ion. The pK(a) of this bound water in the zinc(II) complex of L(1) and L(2) is approximately 7.5. Isothermal calorimetry experiments carried out on [ZnL(1)(L2)(OH(2))](CF(3)SO(3))(2) and [Zn(2)L(2)(OH(2))(2)](CF(3)SO(3))(4) in buffered water (pH 7.4) at 25 degrees C show that the host strongly binds a series of phosphate derivatives. In comparison, the complex [CuL(3)(OH(2))(2)](CF(3)SO(3))(2) is a poor receptor toward phosphate substrates.  相似文献   

13.
Two new polytopic ligands L1 and L2 have been synthesized. They consist of a central tren unit to which three 1,4,7,10-tetraazacyclododecane rings are attached via an ethylene and a trimethylene bridge, respectively. The complexation properties of L1 and L2 towards Cu(2+) and Ni(2+) were studied by potentiometric pH titration, UV-Vis, EPR spectroscopy and kinetic techniques. As a comparison, the Cu(2+) and Ni(2+) complexes with L3 (1-(N-methyl-2-aminoethyl-1,4,7,10-tetraazacyclododecane)) were also investigated. The crystal structures of [CuL3H(H(2)O)](ClO(4))(3) and [NiL3Cl](ClO(4)) were solved and show that the side chain in its protonated form is not involved in coordination, whereas deprotonated it binds to the metal ion. The thermodynamically stable 3:1 complexes of L1 or L2 have a metal ion in the three macrocyclic units. However, when three equivalents of Cu(2+) are added to L1 or L2 the metal ion first binds to the tren unit and only then to the macrocycles. The kinetics of the different steps of complexation have been studied and a mechanism is proposed.  相似文献   

14.
1,4,7,10-四氮杂环十二烷及其衍生物的合成   总被引:8,自引:0,他引:8  
1,4,7,10-四氮杂环十二烷(cyclen)及其衍生物具有优良的配位性能, 在化学及生物医学等领域有广泛的应用潜力,合成高纯度的cyclen非常困难,制备 符合不同要求的cyclen衍生物也有相当的难度,本文着重介绍cyclen及其N-取代 衍生物的各种合成方法,并对不同方法的优缺点进行比较,以供研究者选择。另外 ,还简要介绍了部分重要的cyclen衍生物在不同领域的应用情况。  相似文献   

15.
朱海燕 《化学研究》2011,22(2):75-78,83
运用密度泛函理论(DFT)的B3LYP方法对常见的大环胺类化合物1,4,7,10-四氮杂环十二烷(cyclen)进行结构优化;进而分析了其前线分子轨道和自然键轨道布居(NBO),并确定了吸附的活性点.通过在cyclen的活性点周围放置H2,研究了其储氢性能.结果表明,1,4,7,10-四氮杂环十二烷是一种很有前途的储氢...  相似文献   

16.
席海涛  王爱健  孙小强  张秀芹  陈强 《结构化学》2009,28(10):1210-1216
A novel molecule tetra-N-alkylation of cyclen (1,4,7,10-tetraazacyclododecane), 1,4,7,10-tetrakis(2-((4-hydroxy)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane 2, was synthesized and structurally characterized by single-crystal X-ray diffraction. The molecule turned into chiral helical compound crystals grown from EtOH by slow diffusion at room temperature and three of the four hydroquinone groups of the benzene ring formed a g-electron-rich cavity by C-H…π stacking interaction. The crystal belongs to the monoclinic system, space group P21/C with a = 13.9192(9), b = 13.2871(6), c = 22.1894(15)A^°, β = 91.4600(10)°, V = 4102.5(4)A^°3, Z = 4, Dc = 1.219 g/cm^3, C40H52N4O8, Mr = 752.89, F(000) = 1616,μ = 0.088 mm^-1, MoKa radiation (λ = 0.71073), R = 0.0578 and wR = 0.1389 for 5588 observed reflections with I 〉 2σ(I). Moreover, compound 2 was characterized with ^1H NMR, ^13C NMR, IR spectra and MS.  相似文献   

17.
The new zinc ternary complexes [Zn(cyclen)NO3]ClO4 (I), [Zn2(cyclen)2(m-nic)](ClO4)3 (II), [Zn2(cyclen)2(m-pic)](ClO4)3 (III) (cyclen=1,4,7,10-tetraazacyclododecane; nic=nicotinic acid; pic=picolinic acid) were synthesized and their spectral and thermal properties were investigated. The compounds were characterized by elemental analysis, IR spectroscopy and TG/DTG, DTA methods. Moreover, the way of coordination of pyridinecarboxylate anions was proposed on the basis of the spectral data and consequently proved with results of X-ray structure analysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
8-Benzenesulfonyloxy-5- N,N-dimethylaminosulfonylquinolin-2-ylmethyl-pendant cyclen (BS-caged-L(4), BS = benzenesulfonyl) was designed and synthesized as a "caged" derivative of a previously described Zn(2+) fluorophore, 8-hydroxy-5- N,N-dimethylaminosulfonylquinolin-2-ylmethyl-pendant cyclen (L(4)) (cyclen = 1,4,7,10-tetraazacyclododecane). In the absence of metal ions and in the dark, BS-caged-L(4) (10 microM) showed negligible fluorescence emission at pH 7.4 (10 mM HEPES with I = 0.1 (NaNO3)) and 25 degrees C (excitation at 328 nm). Addition of Zn(2+) induced an increase in the UV/vis absorption of BS-caged-L(4) (10 microM) at 258 nm and a significant increase in fluorescence emission at 512 nm. These responses are results from the formation of Zn(H-1L(4)) by the hydrolysis of the sulfonyl ester at the 8-position of the quinoline unit promoted by the Zn(2+)-bound HO(-). Improvement of cell membrane permeation in comparison with L(4) is also described.  相似文献   

19.
A bis-azamacrocyclic anthracene (L2), which has two a 12-membered cyclic tetraamine (cyclen) connected through a 9,10-dimethylanthracene spacer, has been synthesized as a new fluorescent chemosensor for detection of pH and metal cations in aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane, L2 = 9,10-bis(1,4,7,10-tetraazacyclododecane-1-ylmethyl)anthracene). The fluorescence response of L2 has been studied in comparison to that of the previously reported monoazamacrocyclic anthracene (L1 = 1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane). Plots of the fluorescence intensity of L2 against pH demonstrate a sigmoidal curve with pKa 7.4, which is lower than that of L1 (8.3). Potentiometric titration reveals that the increase in the L2 fluorescence requires protonation of both cyclen rings, thus resulting in the lower pKa value. L2 demonstrates impressive fluorescence response against metal cations. At basic pH, upon addition of Zn2+ or Cd2+, L1 leads to an increase in the fluorescence intensity with a 1:1 metal-intensity response. L2, however, shows a 2:1 response to Zn2+, while showing a 1:1 response to Cd2+. At neutral pH, L1 fluorescence decreases upon addition of Zn2+ or Cd2+ because of a formation of metal-anthracene pi complex. L2, however, still demonstrates a Zn2+-induced increase in intensity with a 2:1 response, while no change in intensity is observed upon Cd2+ addition. The obtained findings suggest potential utilities of L2 as a new type fluorescent chemosensor for the detection of cations in aqueous solution.  相似文献   

20.
The new ligand, [Fc(cyclen)2] ( 5 ) (Fc=ferrocene, cyclen=1,4,7,10‐tetraazacyclododecane), and corresponding ZnII complex receptor, [Fc{Zn(cyclen)(CH3OH)}2](ClO4)4 ( 1 ), consisting of a ferrocene moiety bearing one ZnII‐cyclen complex on each cyclopentadienyl ring, have been designed and prepared through a multi‐step synthesis. Significant shifts in the 1H NMR signals of the ferrocenyl group, cf. ferrocene and a previously reported [Fc{Zn(cyclen)}]2+ derivative, indicated that the two ZnII‐cyclen units in 1 significantly affect the electronic properties of the cyclopentadienyl rings. The X‐ray crystal structure shows that the two positively charged ZnII‐cyclen complexes are arranged in a trans like configuration, with respect to the ferrocene bridging unit, presumably to minimise electrostatic repulsion. Both 5 and 1 can be oxidized in 1:4 CH2Cl2/CH3CN and Tris‐HCl aqueous buffer solution under conditions of cyclic voltammetry to give a well defined ferrocene‐centred (Fc0/+) process. Importantly, 1 is a highly selective electrochemical sensor of thymidilyl(3′‐5′)thymidine (TpT) relative to other nucleobases and nucleotides in Tris‐HCl buffer solution (pH 7.4). The electrochemical selectivity, detected as a shift in reversible potential of the Fc0/+ component, is postulated to result from a change in the configuration of bis(ZnII‐cyclen) units from a trans to a cis state. This is caused by the strong 1:1 binding of the two deprotonated thymine groups in TpT to different ZnII centres of receptor 1 . UV‐visible spectrophotometric titrations confirmed the 1:1 stoichiometry for the 1 :TpT adduct and allowed the determination of the apparent formation constant of 0.89±0.10×106 M ?1 at pH 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号