首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

2.
A series of tris(2-pyridylmethyl)amines including one and two asymmetric centers were synthesized in a stereo-controlled fashion as potential ligands of lanthanide cations. The reaction of chiral pyridylethyl methanesulfonates and bis(pyridylmethyl)amines occurred via an S(N)2 mechanism with complete inversion of asymmetric centers and gave the stereocontrolled tris(2-pyridylmethyl)amines, the stereochemical purity of which was ascertained by GPC, NMR, X-ray, and polarimetry experiments. They formed stable Tb(3+) and Eu(3+) complexes having 1:1, 1:2, and 1:3 stoichiometry (metal:ligand) in CH(3)CN solutions. NMR and UV titration experiments revealed that their complexation behaviors were rarely influenced by ligand chirality but significantly affected by the nature of the counteranion and the concentration ratio of metal to ligand. The Tb(3+) and Eu(3+) complexes with these tripodal ligands exhibited characteristic luminescence spectra upon excitation for pyridine chromophores (260 nm), the intensities of which were largely dependent on the ligand chirality. The meso isomer of the disubstituted tripods particularly exhibited the enhanced terbium luminescence ca. three times more than its diastereomer and un- and monosubstituted tripods. Direct excitation at the lanthanide center had similar chirality effects on the luminescence profiles, indicating that the stereochemistry of the employed ligand largely influenced the lanthanide emitting processes. Since the ligand chirality finely modified the local coordination environments around the lanthanide center, the use of stereocontrolled ligands is applicable in design of the luminescent lanthanide complexes.  相似文献   

3.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

4.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

5.
Xu YY  Hemmilä IA 《Talanta》1992,39(7):759-763
Application of the co-fluorescence effect has been examined for the simultaneous detection of the lanthanide ions Eu(3+), Tb(3+), Sm(3+) and Dy(3+). In the presence of Y(3+) and 2,2'-bipyridine (BP), the fluorescence intensities of the pivaloyltrifluoroacetone chelates of these lanthanides were greatly enhanced by an inter-chelate energy transfer process. Under optimized conditions, the following detection limits were obtained; 0.019 pM for Eu(3+), 0.27 pM for Tb(3+), 3.8 pM for Sm(3+) and 20 pM for Dy(3+), when a sensitive time-resolved fluorometer was used for the measurement. A co-fluorescence based fluorescence enhancement solution was also tested in a dual-label time-resolved immunofluorometric assay of luteinizing and follicle stimulating hormones (LH and FSH) based on the use of Eu(3+) and Tb(3+) as the label ions. The present fluorometric detection system is particularly well suited for multilabel time-resolved fluorometric immunoassays utilizing two, three or four ion labels simultaneously.  相似文献   

6.
Ortho-phthalic anhydride was modified with long chain alcohol (1-hexadecanol, 1-octadecanol and 1-eicosanol) to their corresponding mono-L phthalate (L=hexadecyl, octadecyl and eicosyl), i.e. monohexadecyl phthalate (16-Phth), monooctadecyl phthalate (18-Phth), and monoeicosyl phthalate (20-Phth), respectively. Nine novel lanthanide (Eu(3+), Tb(3+) and Dy(3+)) complexes with these three mono-L phthalate ligands were synthesized and characterized by elemental analysis and IR spectra. The photophysical properties of these complexes were studied in detail with various spectroscopes such as ultraviolet-visible absorption spectra, low temperature phosphorescence spectra and fluorescent spectra. The ultraviolet-visible absorption spectra show some band shifts with the different chain-length of phthalate monoester and homologous lanthanide complexes. From the low temperature phosphorescent emission, the triplet state energies for these three ligands were determined to be around 22,650 cm(-1) (16-Phth), 23,095 cm(-1) (18-Phth) and 22,400 cm(-1) (20-Phth), respectively, suggesting they are suitable for the sensitization of the luminescence of Eu(3+), Tb(3+) and Dy(3+). The fluorescence excitation and emission spectra for these lanthanides complexes of the three ligands take agreement with the above predict from energy match.  相似文献   

7.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

8.
Two tripodal ligands, bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amine (L(1)) and bis(2-pyridylmethyl)(2-benzimidazolylmethyl)amine (L(2)), were synthesized. With the third chromophoric ligand antipyrine (Antipy), three series of lanthanide(III) complexes were prepared: [LnL(1)(Antipy)(3)](ClO(4))(3) (series A), [LnL(1)(Antipy)Cl(H(2)O)(2)]Cl(2)(H(2)O)(2) (series B), and [LnL(2)(NO(3))(3)] (series C). The nitrate salt of the free ligand H(2)L(1).(NO(3))(2) and six complexes were structurally characterized: Pr(3+)A, Y(3+)A, Eu(3+)B, Eu(3+)C, Gd(3+)C and Tb(3+)C, in which the two A and three C complexes are isomorphous. Crystallographic studies showed that tripodal ligands L(1) and L(2) exhibited a tripodal coordination mode and formed 1:1 complexes with all lanthanide metal ions. The coordination numbers of the lanthanide metal ions for the A, B, and C complexes were 7, 8, and 10, respectively. Conductivity studies on the B and C complexes in methanol showed that, in the former, the coordinated Cl(-) dissociated to give 3:1 electrolytes and, in the latter, two coordinated NO(3)(-) ions dissociated to give 2:1 electrolytes. Detailed photophysical studies have been performed on the free ligands and their Gd(III), Eu(III), and Tb(III) complexes in several solvents. The results show a wide range in the emission properties of the complexes, which could be rationalized in terms of the coordination situation, the (3)LC level of the complexes, and the subtle variations in the steric properties of the ligands. In particular the Eu(3+)A and Tb(3+)A complexes, in which the central metal ions were wholly coordinated by chromophoric ligands of one L(1) and three antipyrine molecules, had relatively higher emission quantum yields than their corresponding B and C complexes.  相似文献   

9.
The hydrothermal synthesis and structural characterization of the lanthanide silicate system [Na(6)Ln(2)Si(12)O(30).x H(2)O] (Ln=La(3+), Sm(3+), Eu(3+), Gd(3+), and Tb(3+)), named AV-21, has been reported. Structural elucidation of the Sm(3+) analogue (isomorphous with the Eu(3+), Gd(3+), and Tb(3+) frameworks) using single-crystal synchrotron X-ray diffraction and solid-state NMR spectroscopy reveal disorder in the Si(1) second coordination sphere. La-AV-21 presents a distinct framework. These materials combine microporosity and interesting photoluminescence features with structural flexibility that allows the introduction of a second or third type of lanthanide center. Room-temperature lifetime decay dynamics have been used to estimate the Ln(3+)-Ln(3+) distances and the maximum distance over which energy transfer is active. Though the majority of Ln(3+) centers occupy regular framework positions, the Ln(2) defect centers are disordered over the Na(1) sites in the pores and greatly influence the energy-transfer process, providing a unique opportunity for studying the relationship between structural disorder and photoluminescence properties in framework solids.  相似文献   

10.
Solid complexes Ln(Sal)3.H2O (Sal: salicylic acid; Ln: La3+, Nd3+, Eu3+, Tb3+) are synthesized, and their photoacoustic (PA) spectra in the UV-Vis region have been recorded. PA intensities of central lanthanide ions are interpreted in terms of the probability of nonradiative transitions. It is found that PA intensity of the ligand increases in the order of Tb(Sal)3.H2O < La(Sal3).H2O < Eu(Sal)3.H2O < Nd(Sal)3.H2O. Different PA intensities of the ligand are interpreted by comparison with the fluorescence spectra. Ternary complexes Eu(Sal)3Phen and Tb(Sal)3Phen (Phen: 1,10-phenanthroline) are synthesized. Compared with their binary complexes, PA intensity of the ligand Sal decreases for Eu(Sal)3Phen, while the reverse is true for that of Tb(Sal)3Phen. The luminescence of Eu3+ increases remarkably when Phen is introduced, and luminescence of Tb3+ decreases greatly when Phen is added. The intramolecular energy transfer and relaxation processes in the complexes are discussed from two aspects: radiative and nonradiative relaxations.  相似文献   

11.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

12.
The hydrothermal synthesis and structural characterization of layered lanthanide silicates, K(3)[M(1-a)Ln(a)Si(3)O(8)(OH)(2)] (M = Y(3+), Tb(3+); Ln = Eu(3+), Er(3+), Tb(3+), and Gd(3+)), named AV-22 materials, are reported. The structure of these solids was elucidated by single-crystal (180 K) and powder X-ray diffraction and further characterized by chemical analysis, thermogravimetry, scanning electron microscopy, (29)Si MAS NMR, and photoluminescence spectroscopy. The Er-AV-22 material is a room-temperature infrared phosphor, while Tb- and Eu-AV-22 are visible emitters with output efficiencies comparable to standards used in commercial lamps. The structure of these materials allows the inclusion of a second (or even a third) type of Ln(3+) ion in the framework and, therefore, the fine-tuning of their photoluminescent properties. For the mixed Tb(3+)/Eu(3+) materials, evidence has been found of the inclusion of Eu(3+) ions in the interlayer space by replacing K+ ions, further allowing the activation of Tb(3+)-to-Eu(3+) energy transfer mechanisms. The occurrence probability of such mechanisms ranges from 0.62 (a = 0.05) to 1.20 ms(-1) (a = 0.1) with a high energy transfer efficiency (0.73 and 0.84, respectively).  相似文献   

13.
The Gd(3+), Tb(3+), and Eu(3+) complexes of a bis-bipyridine-phenylphosphine oxide ligand PhP(O)(bipy)(2) 1 (bipy for 6-methylene-6'-methyl-2,2'-bipyridine) have been synthesized. In acetonitrile solutions at room temperature, the Tb(3+) and Eu(3+) complexes show a metal-centered luminescence, indicative of an efficient energy transfer from the two bipy subunits to the Ln center. The photophysical properties drastically depend on the nature of the anions present in solution. In particular, addition of 2 equiv of nitrate anions to a solution containing the [Ln.1](OTf-)(3) leads to an 11-fold increase of the luminescence intensity for the Eu(3+) and a 7-fold increase for the Tb(3+) complexes. Similar effects are provided with Cl-, F-, and CH(3)COO- anions. UV-vis titration experiments were used to determine association constants for binding of, respectively, one, two, and three anions. Stepwise anion addition has also been investigated on the molecular level using quantum mechanical (QM) calculations for the Eu complexes. These calculations reproduce the experimental findings, especially if solvent molecule addition is taken into account. The X-ray crystal structure of the nitrate salt of the Tb complex, as well as QM calculation of a similar Eu complex, demonstrates the coordination of three nitrate anions in a bidentate mode and the step-by-step relegation of the bipy subunits in the second coordination sphere. These features give valuable insights into the mechanism of the overall light amplification process.  相似文献   

14.
Europium and Terbium were found to form ternary complexes with ethylenediammine tetraacetic acid (EDTA) and ortho-phenanthroline (o-phen) in aqueous solution in the pH range of 6-8. These ternary complexes were found to have 1:1:1 composition and showed strong fluorescence properties. The method is made use of for the determination of these lanthanide ions in presence of excess amounts of other lanthanide ions. The lowest detection limit was calculated as 30 and 65 ng/ml of Tb(3+) and Eu(3+), respectively.  相似文献   

15.
吡唑啉酮类稀土配合物的发光性质研究   总被引:3,自引:3,他引:0  
合成了一系列吡唑啉酮类稀土铽、铕、钐、钆、镝的配合物, 并采用元素分析、红外光谱和紫外-可见光谱对其进行了表征, 解析了铕配合物的晶体结构. 测定了配体的三重态能级, 研究了这4种配合物的发光性质. 并通过研究配体到稀土离子的能量传递过程, 合理地解释了这些稀土配合物发光性质的差异.  相似文献   

16.
Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein, we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn(2+). This europium (Eu(3+)) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn(2+). Upon addition of Zn(2+) to a solution of [Eu-7], the luminescence of Eu(3+) is strongly enhanced, with high selectivity for Zn(2+) over other biologically relevant metal cations. One of the important advantages of [Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as compared with previously reported Zn(2+)-sensitive luminescent lamthanide sensors, whose excitation wavelength is at too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn(2+) changes in living HeLa cells was confirmed. This novel Zn(2+)-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanide chemosensors for biological applications.  相似文献   

17.
Lanthanide complexes based on bis(amides) of diethylenetriaminepentaacetic acid with thiol functionalities are modified with 2,2'-dipyridyl disulfide to give activated complexes that can selectively react with thiol-functionalized complexes to form heterometallic lanthanide macrocycles. The preparation and full characterization of the polyaminocarboxylate ligands N,N'-bis[p-thiophenyl(aminocarbonyl)]diethylenetriamine-N,N',N'-triacetic acid (H(3)L(x)) and the activated N,N'-bis[p-(pyridyldithio)[phenyl(aminocarbonyl)]]diethylenetriamine-N,N',N'-triacetic acid (H(3)L(y)) and the complexes LaL(x), NdL(x), SmL(x), EuL(x), GdL(x), DyL(x), TbL(x), ErL(x), and YbL(x) are reported. The luminescence properties of the LnL(x) complexes emitting in the visible (where Ln = Dy(3+), Tb(3+), Eu(3+), and Sm(3+)) are examined by steady-state and time-resolved photoluminescence, and the triplet state energy level of GdL(x) was estimated to be 24?100 cm(-1) from the 0-0 band of the 77 K phosphorescence spectrum. Near-infrared emission was detected for the NdL(x), YbL(x), and ErL(x) complexes, demonstrating the versatility of the thiophenol chromophore. The assembly of purely heterometallic EuTbL(x)(2) macrocycles by reaction of EuL(x) with TbL(y) was followed by UV-vis absorption spectroscopy, monitoring the characteristic absorption peak of pyridyl-2-thione at 353 nm. Analysis of the solution by mass spectrometry reveals the formation of purely heterometallic macrocycle EuTbL(x)(2). This is in contrast with the results obtained by dynamic self-assembly under oxidative conditions, where we observe a statistical mixture of macrocyclic complexes of Eu(2)L(x)(2), Tb(2)L(x)(2), and EuTbL(x)(2). The EuTbL(x)(2) macrocycle displays dual color emission, incorporating the characteristic f-f transitions of Eu(3+) and Tb(3+). Investigation into the time-resolved photophysical properties of EuTbL(x)(2) reveals energy transfer from Tb(3+) to Eu(3+), facilitated by the different conformations of the macrocycle in solution.  相似文献   

18.
4-Vinylphenylboronic acid ligand (VPBA) is functionalized with two crosslinking reagents (3-(triethoxysilyl)-propylisocyanate [TEPIC] and 3-(trimethoxysilyl) propyl methacrylate [TMPMA]) to achieve the two special molecular bridge VPBA-TEPIC and VPBA-TMPMA. Meanwhile, beta-diketone ligands (2-thenoyltrifluoroacetone [TTA], acetyl acetone [ACAC]) as the second ligands play the role of the main energy donor, which absorb abundant energy in ultraviolet-visible extent and then transfer the energy to the corresponding lanthanide ions (Eu(3+), Tb(3+)) to sensitize their emission of them. Eight binary and ternary Eu(3+), Tb(3+) hybrids with VPBA-TEPIC (VPBA-TMPMA) and TTA (ACAC) have been constructed, whose photoluminescence properties are studied in depth and suggest that the ternary hybrids show the favorable characteristic luminescent properties (longer lifetime and higher quantum efficiency).  相似文献   

19.
Luminescent metal-organic frameworks (MOFs), Ln(3+)@bio-MOF-1, were synthesized via postsynthetic cation exchange of bio-MOF-1 with Tb(3+), Sm(3+), Eu(3+), or Yb(3+), and their photophysical properties were studied. We demonstrate that bio-MOF-1 encapsulates and sensitizes visible and near-infrared emitting lanthanide cations in aqueous solution.  相似文献   

20.
Two novel silica based lanthanide complexes (Tb(a)(2) and Eu(a)(2)) were encapsulated into poly(acrylic acid) host. Both Tb(III) and Eu(III) containing hydrogels have typical and easily distinguished narrow line emissions occurring in the green and red region respectively. Particularly, the excitation wavelength for Eu complex can be extended into nearly visible light range (λ(ex) = 395 nm). Interestingly, we discover that these target materials not only exhibit selective emission response towards HSO(4)(-) (detection limit 10(-5) M) compared with CH(3)COO(-), F(-), Cl(-), Br(-) and I(-) but also give unique quenching to Cu(2+) (detection limit 10(-5) M) (tested cations: Cu(2+), Pd(2+), Cd(2+), Co(2+) and Mn(2+)). More importantly, this kind of materials can be recycled more than 10 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号