首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
佘川  余佩  骆兴霆  田再文  张万轩 《应用化学》2017,34(10):1134-1139
炔基硒醚是合成一些有机硒化合物的重要起始物。本文研究发现,在三溴化金(Au Br3)催化下,端位炔和二芳基二硒醚在弱碱(如碳酸钾)存在下反应,生成炔基芳基硒醚,产率为69%~98%;在空气参与下,于80℃下进行反应,反应条件简单,且二硒醚的两个硒原子均可以被利用。二甲基亚砜(DMSO)是合适的溶剂,在极性较小的溶剂(如甲苯、四氢呋喃)中,此反应不能进行。芳基炔(如苯乙炔、对甲基苯乙炔、对氯苯乙炔等)、烯基炔(如环己烯乙炔)和烷基炔(如1-壬炔)均能顺利进行此反应。当芳基炔苯环的间位或邻位连有取代基时,反应产率较低(69%~82%),而对位无论是连有吸电子基还是给电子基,该反应均可以得到很高的产率(95%)。  相似文献   

2.
A simple method for the synthesis of monoselenides and diselenides having 1,2,3-triazole ring is described herein. The three component reaction of ethynylstibanes, organic azides, and selenium powder is catalyzed by CuI (10?mol%) using 1,10-phenanthroline as the ligand (10?mol%) under aerobic conditions. Either selenides or diselenides can be synthesized by selecting the appropriate amount of selenium powder for otherwise identical reaction conditions. The obtained selenides and diselenides having a 1,2,3-triazole ring are all novel compounds. By using an antimony reagent, this one-pot reaction provides regioselective double Se-arylation under simple reaction conditions.  相似文献   

3.
Reaction of the lithium salt Li[1-R-1,2-closo-C(2)B(10)H(10)] with selenium under mild conditions, followed by hydrolysis gave the diselenide compound (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) in contrast to the well-reported mercapto compounds 1-SH-2-R-1,2-closo-C(2)B(10)H(10) obtained using a similar synthetic procedure. Details for the preparation and X-ray structural characterisation of the new compounds (2-Me-1,2-closo-C(2)B(10)H(10))(2)Se, (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) (R = Me, Ph, ) are specified. To further explore the mechanism of the dimerization reaction, the complex [Au(1-Se-2-Me-1,2-closo-C(2)B(10)H(10))(PPh(3))] was synthesized, confirming the existence of the intermediate Li[1-Se-2-R-1,2-closo-C(2)B(10)H(10)] at the early stages of the reaction before selenium oxidation. Theoretical calculations and cyclic voltammetry (CV) studies were carried out to compare the bonding nature of the sulfur and the selenium analog compounds. It was determined that diselenides have a higher tendency to reduce with respect to the disulfides and all chalcogen atoms were found to be positively charged.  相似文献   

4.
The reactivity of disulfide and diselenide derivatives towards F? and CN? nucleophiles has been investigated by means of B3PW91/6‐311+G(2df,p) calculations. This theoretical survey shows that these processes, in contrast with the generally accepted view of disulfide and diselenide linkages, do not always lead to S? S or Se? Se bond cleavage. In fact, S? S or Se? Se bond fission is the most favorable process only when the substituents attached to the S or the Se atoms are not very electronegative. Highly electronegative substituents (X) strongly favor S? X bond fission. This significant difference in the observed reactivity patterns is directly related to the change in the nature of the LUMO orbital of the disulfide or diselenide derivative as the electronegativity of the substituents increases. For weakly electronegative substituents, the LUMO is a σ‐type S? S (or Se? Se) antibonding orbital, but as the electronegativity of the substituents increases the π‐type S? X antibonding orbital stabilizes and becomes the LUMO. The observed reactivity also changes with the nature of the nucleophile and with the S or Se atom that undergoes the nucleophilic attack in asymmetric disulfides and diselenides. The activation strain model provides interesting insights into these processes. There are significant similarities between the reactivity of disulfides and diselenides, although some dissimilarities are also observed, usually related to the different interaction energies between the fragments produced in the fragmentation process.  相似文献   

5.
Radical intermediates formed during irradiation of selenides and diselenides have been trapped by using nitrosodurene. ESR spectra show that, depending upon the organoselenium compound used, the radical species results from the cleavage of either a CSe bond or a SeSe bond. The hyperfine coupling with 77Se has been detected for RSeN(O)R', and indicates a low spin density on the selenium.  相似文献   

6.
With PhI as catalyst and m CPBA as oxidant, a novel and efficient catalytic procedure has been developed for the acetoxyselenylation and formyloxyselenylation of alkenes. In this protocol, PhI is first oxidized into hypervalent iodine intermediate, which promotes the cleavage of Se–Se bond in diselenides. The in situ generated electrophilic selenium species then reacts with alkenes, affording 2‐acetoxy‐1‐selenides and 2‐formyloxy‐1‐selenides in high regioselectivity and good yields.  相似文献   

7.
The new selenogermanates Sr2Ge2Se5 and Ba2Ge2Se5 were synthesized by heating stoichiometric mixtures of binary selenides and the corresponding elements to 750 degrees C. The crystal structures were determined by single-crystal X-ray methods. Both compounds adopt previously unknown structure types. Sr2Ge2Se5 (P2(1)/n, a = 8.445(2) A, b = 12.302 A, c = 9.179 A, beta = 93.75(3) degrees, Z = 4) contains [Ge4Se10]8- ions with homonuclear Ge-Ge bonds (dGe-Ge = 2.432 A), which may be described as two ethane-like Se3Ge-GeSeSe2/2 fragments sharing two selenium atoms. Ba2Ge2Se5 (Pnma, a = 12.594(3) A, b = 9.174(2) A, c = 9.160(2) A, Z = 4) contains [Ge2Se5]4- anions built up by two edge-sharing GeSe4 tetrahedra, in which one terminal Se atom is replaced by a lone pair from the divalent germanium atom. The alkaline earth cations are arranged between the complex anions, each coordinated by eight or nine selenium atoms. Ba2Ge2Se5 is a mixed-valence compound with GeII and GeIV coexisting within the same anion. Sr2Ge2Se5 contains exclusively GeIII. These compounds possess electronic formulations that correspond to (Sr2+)2(Ge3+)2(Se2-)5 and (Ba2+)2- Ge2+Ge4+(Se2-)5. Calculations of the electron localization function (ELF) reveal clearly both the lone pair on GeII in Ba2Ge2Se5 and the covalent Ge-Ge bond in Sr2Ge2Se5. Analysis of the ELF topologies shows that the GeIII-Se and GeIV-Se covalent bonds are almost identical, whereas the GeII-Se interactions are weaker and more ionic in character.  相似文献   

8.
Efficient and selective methods have been developed for the synthesis of previously unknown organyl [3-(trimethylsilyl)prop-2-yn-1-yl] selenides, organyl prop-2-yn-1-yl selenides, and bis[3-(trimethylsilyl) prop-2-yn-1-yl] selenide by reactions of 3-bromo-1-(trimethylsilyl)prop-1-yne with the corresponding organylselenolates and sodium selenide generated from diorganyl diselenides or elemental selenium by the action of sodium tetrahydridoborate.  相似文献   

9.
Though aminophosphines have been known for a century, and a large variety of such compounds has been synthesized for different aspects of their chemistry, until now, no examples are available on phosphines containing three different amino substituents. In this study, the first examples of such chiral tris(amino)phosphines and o-phenylenedioxo(amino)phosphines were successfully synthesized using condensation reactions, and they were converted to their respective selenides using a simple oxidative addition reaction. The compounds are characterized by IR, 1H, and 13C NMR spectral techniques, and the spectral aspects are presented. The spectral studies (i) indicated that they are indeed powerful tools for structural elucidation of compounds; (ii) showed the effect of heavier selenium atom on the P–N bond rotation process; and (iii) further supported the fact that dipolar structure predominates over the π-bond structure for the aminophosphine selenides.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

10.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were applied to crystal-chemical analysis of all known compounds whose structures contain rhodium atoms surrounded by chalcogen atoms. The influence of the rhodium valence state and the nature of the chalcogen on the main features of Rh stereochemistry are discussed. Rhodium atoms exhibit coordination numbers of 6, 5, or 4 with respect to S, Se, or Te atoms; in addition to the bonds with chalcogens, rhodium can form 1 to 4 bonds with metal atoms. The VDP volume for Rh(III), Rh(2.67), and Rh(II) atoms in selenides and tellurides very weakly depends on the valence state, whereas in the case of sulfides, the volume increases rather regularly with a decrease in the metal oxidation number from Rh(III) to Rh(I).  相似文献   

11.
The preparation, spectroscopic characterisation and crystal structures of [FcP(mu-Se)Se]2, [FcP(mu-Se2)Se]2 and [PhP(mu-Se2)Se]2 are reported. Crystallographic data reveal planar four-membered PSePSe and skewed six-membered P2Se4 rings, respectively, in all cases with trans arrangement of organic substituents and exo selenium atoms. Whilst stable at room temperature in solid state, NMR data suggest the six-membered rings of both the ferrocenyl and phenyl compounds decompose in the solution with loss of red selenium, forming PSe2PSe five-membered rings.  相似文献   

12.
Selenocystine ([Sec]2) and aryl-substituted selenocysteine (Sec) derivatives are synthesized, starting from commercially available amino acid l-serine. These compounds are characterized by a number of analytical techniques such as NMR (1H, 13C and 77Se) and TOF mass spectroscopy. This study reveals that the introduction of amino/imino substituents capable of interacting with selenium may stabilize the Sec derivatives. This study further suggests that the oxidation-elimination reactions in Sec derivatives could be used for the generation of biologically active selenols having internally stabilizing substituents.  相似文献   

13.
Thermal gas-phase reactions of acrolein, cinnamaldehyde, and benzaldehyde with diorganyl chalcogenides and diorganyl dichalcogenides were studied. Acrolein does not react with chalcogenides at 300–600°C but completely decomposes under reaction conditions. At 600–650°C, cinnamaldehyde reacts only with diorganyl selenides and diselenides to give benzoselenophene. Its highest yield (53%) is achieved in the reaction with dimethyl diselenide at 630°C and at an equimolar ratio of the reactant. The gas-phase reactions of benzaldehyde at 400–500°C afford chalcogen-containing derivatives of several types, among which thioanisole and its selenium or tellurium analogs predominate. The mechanisms of the above reactions were discussed in terms of homolytic substitution of the formyl group at unsaturated carbon atoms by chalcogenyl radicals.  相似文献   

14.
A new series of 24- and 28-membered macrocyclic systems associated with "hard" (N and O) and "soft" (Se or Te) donor atoms have been developed via template free (2 + 2) condensation reactions of bis(aminoalkyl)selenides/tellurides, {NH 2 (CH 2 ) n } 2 E (E = Se, Te; n = 2,3) with 2,6-diacetyl-4-methylphenol. A macroacycle, Se{(CH 2 ) 2 N=C(CH 3 )C 6 H 2 (OH)(CH 3 )C=O(CH 3 )} 2 , has also been obtained. These compounds have been characterized by ESMS, IR, and 1 H, 13 C, and 77 Se NMR spectroscopy.  相似文献   

15.
Vinylic selenides were prepared in good yields by hydroselenation of alkynes with lithium butylselenolate generated by reaction of n-butyllithium with elemental selenium. The regio- and stereochemistry of the hydroselenation depend on the nature of the substituents bonded to the alkyne.  相似文献   

16.
《Tetrahedron》1988,44(19):6119-6130
The reduction of selenium with lithium in THF in the presence of diphenylacetylene as a catalyst afforded lithium diselenide, which reacted with electrophiles giving alkyl or aryl diselenides 1 - 3 and selenides 4, as by-products. The useful method for preparation of diselenides based on this reaction was elaborated.  相似文献   

17.
Several routes for the synthesis of m-terphenyl thio-, seleno-, and telluroethers were investigated. m-Terphenyl iodides react with diphenyl diselenides or ditellurides (CsOH·H(2)O, DMSO, 110 °C) to give the desired compounds in 19-84% yield which significantly extends the previously reported such reactions because o-benzyne cannot be an intermediate as previously suggested. However, the most general synthetic route was that involving reaction of 2,6-diaryl Grignard reagents with sulfur, selenium, or tellurium electrophiles. The m-terphenyl thio-, seleno-, and telluroethers were characterized spectroscopically and, in one case, by single-crystal X-ray analysis. Certain of these compounds showed atropisomerism and barriers for interconversion of isomers were determined by variable-temperature NMR spectroscopy. The barriers for interconverting the syn and anti atropisomers increase on going from the analogous S to Se to Te compounds. Calculations on this isomerization revealed that the barriers are due to rotation about the aryl-aryl bond and that the barriers for rotation about the aryl-chalcogen bond are much lower.  相似文献   

18.
Synthetic chalcogen–phosphorus chemistry permanently makes new challenges to computational Nuclear Magnetic Resonance (NMR) spectroscopy, which has proven to be a powerful tool of structural analysis of chalcogen–phosphorus compounds. This paper reports on the calculations of one-bond 31P 77Se and 31P 125Te NMR spin–spin coupling constants (SSCCs) in the series of phosphine selenides and tellurides. The applicability of the combined computational approach to the one-bond 31P 77Se and 31P 125Te SSCCs, incorporating the composite nonrelativistic scheme, built of high-accuracy correlated SOPPA (CC2) and Coupled Cluster Single and Double (CCSD) methods and the Density Functional Theory (DFT) relativistic corrections (four-component level), was examined against the experiment and another scheme based on the four-component relativistic DFT method. A special J-oriented basis set (acv3z-J) for selenium and tellurium atoms, developed previously by the authors, was used throughout the NMR calculations in this work at the first time. The proposed computational methodologies (combined and ‘pure’) provided a reasonable accuracy for 31P 77Se and 31P 125Te SSCCs against experimental data, characterizing by the mean absolute percentage errors of about 4% and 1%, and 12% and 8% for selenium and tellurium species, respectively. The present study reports typical relativistic corrections to 77Se 31P and 125Te 31P SSCCs, calculated within the four-component DFT formalism for a broad series of tertiary phosphine selenides and tellurides with different substituents at phosphorus.  相似文献   

19.
ω-hydroxyalkyl selenides were synthesized in good yields under phase-transfer conditions which involved hadrazine reduction on selenium powder and then alkylation with ω-haloalkyl alcohols in the presence of TBAB, reduction the resulting diselenides with KBH4 followed by treatment with alkyl halides.  相似文献   

20.
Under iodine-catalyzed and visible light-irradiated aerobic conditions, selenoalkoxylation of olefins with diselenides and alcohols can be efficiently achieved to afford the useful α-alkoxyl selenides in the presence of only 0.5 equiv. of H2O2. Controlling the sub-stoichiometric H2O2 amount is crucial to avoid the non-selective over-oxidation of the diselenides that leads to the ineffective hyper-valent selenium compounds. Meanwhile, under visible light irradiation, the green, safe, and low-cost air can work as a supplemental mild oxidant in the reaction to ensure selective oxidation of the diselenides, full conversion of the reactants, and ultimately good yield of the products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号