首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have performed the molecular dynamics simulations of ionically conducting lithium metasilicate, Li(2)SiO(3), to get a more in depth understanding of the heterogeneous ion dynamics by separating out the partial contributions from localized and diffusive ions to the mean square displacement (MSD) , the non-Gaussian parameter alpha(2)(t), and the van Hove function G(s)(r,t). Several different cage sizes l(c) have been used for the definition of localized ions. Behaviors of fast ions are obtained by the subtraction of the localized component from the r(2)(t) of all ions, and accelerated dynamics is found in the resultant subensemble. The fractional power law of MSD is explained by the geometrical correlation between successive jumps. The waiting time distribution of jumps also plays a role in determining but does not affect the exponent of its fractional power law time dependence. Partial non-Gaussian parameters are found to be instructive to learn how long length-scale motions contribute to various quantities. As a function of time, the partial non-Gaussian parameter for the localized ions exhibits a maximum at around t(x2), the onset time of the fractional power law regime of . The position of the maximum is slightly dependent on the choice of l(c). The power law increases in the non-Gaussian parameter before the maximum are attributed to the Levy distribution of length scales of successive (long) jumps. The decreases with time, after the maximum has been reached, are due to large back correlation of motions of different length scales. The dynamics of fast ions with superlinear dependence in their MSD also start at time around the maximum. Also investigated are the changes of the characteristic times demarcating different regimes of on increasing temperatures from the glassy state to the liquid state. Relation between the activation energies for short time and long time regimes of is in accord with interpretation of ion dynamics by the coupling model.  相似文献   

2.
Cai LH  Panyukov S  Rubinstein M 《Macromolecules》2011,44(19):7853-7863
We use scaling theory to derive the time dependence of the mean-square displacement ?Δr(2)? of a spherical probe particle of size d experiencing thermal motion in polymer solutions and melts. Particles with size smaller than solution correlation length ξ undergo ordinary diffusion (?Δr(2) (t)? ~ t) with diffusion coefficient similar to that in pure solvent. The motion of particles of intermediate size (ξ < d < a), where a is the tube diameter for entangled polymer liquids, is sub-diffusive (?Δr(2) (t)? ~ t(1/2)) at short time scales since their motion is affected by sub-sections of polymer chains. At long time scales the motion of these particles is diffusive and their diffusion coefficient is determined by the effective viscosity of a polymer liquid with chains of size comparable to the particle diameter d. The motion of particles larger than the tube diameter a at time scales shorter than the relaxation time τ(e) of an entanglement strand is similar to the motion of particles of intermediate size. At longer time scales (t > τ(e)) large particles (d > a) are trapped by entanglement mesh and to move further they have to wait for the surrounding polymer chains to relax at the reptation time scale τ(rep). At longer times t > τ(rep), the motion of such large particles (d > a) is diffusive with diffusion coefficient determined by the bulk viscosity of the entangled polymer liquids. Our predictions are in agreement with the results of experiments and computer simulations.  相似文献   

3.
We study the dynamics of flexible polymer chains in solution by combining multiparticle-collision dynamics (MPCD), a mesoscale simulation method, and molecular-dynamics simulations. Polymers with and without excluded-volume interactions are considered. With an appropriate choice of the collision time step for the MPCD solvent, hydrodynamic interactions build up properly. For the center-of-mass diffusion coefficient, scaling with respect to polymer length is found to hold already for rather short chains. The center-of-mass velocity autocorrelation function displays a long-time tail which decays algebraically as (Dt)(-3/2) as a function of time t, where D is the diffusion coefficient. The analysis of the intramolecular dynamics in terms of Rouse modes yields excellent agreement between simulation data and results of the Zimm model for the mode-number dependence of the mode-amplitude correlation functions.  相似文献   

4.
The influence of hydrodynamic screening near a surface on the dynamics of a single semiflexible polymer is studied by means of Brownian dynamics simulations and hydrodynamic mean field theory. The polymer motion is characterized in terms of the mean squared displacements of the end-monomers, the end-to-end vector, and the scalar end-to-end distance. In order to control hydrodynamic screening effects, the polymer is confined to a plane at a fixed separation from the wall. When gradually decreasing this separation, a crossover from Zimm-type towards Rouse (free-draining) polymer dynamics is induced. However, this crossover is rather slow and the free-draining limit is not completely reached--substantial deviations from Rouse-like dynamics are registered in both simulations and theory--even at distances of the polymer from the wall on the order of the monomer size. Remarkably, the effect of surface-induced screening of hydrodynamic interactions sensitively depends on the type of dynamic observable considered. For vectorial quantities such as the end-to-end vector, hydrodynamic interactions are important and therefore surface screening effects are sizeable. For a scalar quantity such as the end-to-end distance, on the other hand, hydrodynamic interactions are less important, but a pronounced dependence of dynamic scaling exponents on the persistence length to contour length ratio becomes noticeable. Our findings are discussed against the background of single-molecule experiments on f-actin [L. Le Goff et al., Phys. Rev. Lett. 89, 258101 (2002)].  相似文献   

5.
The intramolecular relaxation dynamics of semiflexible dendrimers in dilute solutions are theoretically investigated in the framework of optimized Rouse-Zimm formalism. Semiflexibility is implemented by modeling topological restrictions on the bond directions and orientations of the respective bond-vectors. Based on our recently developed approach for semiflexible dendrimers [A. Kumar and P. Biswas, Macromolecules 43, 7378 (2010)], the mechanical and dielectric relaxation moduli are studied as functions of local flexibility parameters and branching topology. It is rather interesting to observe that semiflexibility affects the local modes of G'(ω) and Δε'(ω), which have lower relaxation rate with increasing bond restrictions, while the collective modes with small relaxation rate remain almost constant. The relaxation dynamics of the flexible dendrimer is similar to that of the semiflexible dendrimer with unrestricted bond orientations (Φ = 0) and is flanked by the compressed (Φ = 30°) and expanded (Φ = 150°) conformations, respectively. The effect of semiflexibility is typically reflected in the intermediate frequency regime. The expanded conformations of semiflexible dendrimers display a power-law behavior in the intermediate frequency regime for both loss and storage modulus resembling fractal structures, while the compressed and unrestricted bond orientation conformations exhibit an approximately logarithmic dependence. The power-law exponent is found to be similar to the flexible dendrimers with excluded volume interactions. Thus, by tuning Φ, a spectrum of dynamic relaxation pattern is obtained spanning a broad range of conformations from a power-law fractal network to a non-fractal one. In certain limits, this highly generalized model captures the characteristics of flexible dendrimers and also resembles La Ferla's model semiflexible dendrimers. The influence of hydrodynamic interactions reduces the dynamical range and the width of the intermediate domain by decreasing the smaller relaxation rates and increasing the higher relaxation rates correspondingly.  相似文献   

6.
Understanding the behavior of a polyelectrolyte in confined spaces has direct relevance in design and manipulation of microfluidic devices, as well as transport in living organisms. In this paper, a coarse-grained model of anionic semiflexible polyelectrolyte is applied, and its structure and dynamics are fully examined with Brownian dynamics (BD) simulations both in bulk solution and under confinement between two negatively charged parallel plates. The modeling is based on the nonlinear bead-spring discretization of a continuous chain with additional long-range electrostatic, Lennard-Jones, and hydrodynamic interactions between pairs of beads. The authors also consider the steric and electrostatic interactions between the bead and the confining wall. Relevant model parameters are determined from experimental rheology data on the anionic polysaccharide xanthan reported previously. For comparison, both flexible and semiflexible models are developed accompanying zero and finite intrinsic persistence lengths, respectively. The conformational changes of the polyelectrolyte chain induced by confinements and their dependence on the screening effect of the electrolyte solution are faithfully characterized with BD simulations. Depending on the intrinsic rigidity and the medium ionic strength, the polyelectrolyte can be classified as flexible, semiflexible, or rigid. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size, as measured by the radius of gyration and end-to-end distance, with changing slit width. For the semiflexible chain, this is coupled to the variations in long-range bond vector correlation. The rigid chain, realized at low ionic strength, does not have minima in size but exhibits a sigmoidal transition. The size of confined semiflexible and rigid polyelectrolytes can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at long length scale.  相似文献   

7.
We present the results of extensive numerical off-lattice Monte Carlo simulations of semiflexible block-copolymer chains adsorbed onto flat homogeneous surfaces. We have compared the behavior of several chain structures, such as homopolymers, diblocks, (A(alpha)B(alpha)) block copolymers, and random heteropolymers. In all the cases studied, we have found the adsorption process to be favored with an increase of the chain rigidity. Particularly, the adsorption of diblock structures becomes a two-step process characterized by two different adsorbing temperatures that depend on the chain stiffness kappa, the chain length N, and the adsorbing energies epsilon(A) and epsilon(B). This twofold adsorbing process changes to a single one for copolymers of reduced block size alpha. Each block of the stiff copolymer chain is found to satisfy the classical scaling laws for flexible chains, however, we found the scaling exponent phi to depend on the chain stiffness. The measurement of the radius of gyration exhibits a typical behavior of a polymer chain composed of Nl(p) blobs whose persistence length follows l(p) approximately (kappa/k(B)T)(0.5) for large stiff chains.  相似文献   

8.
We investigate by Monte Carlo simulations the partitioning of semiflexible chains into slits the sizes of which are in the range of coil dimensions. The investigated chains have variable rigidities within the coil regime not reaching the rigid rod limit. Noticeable deviations of the commonly used approximate persistence length from its exact counterpart are reported. The partitioning of semiflexible chains in the reduced plot of partitioning coefficient versus confinement is located between the results for the partitioning of a sphere and for a rigid rod. At large confinement, and for the most rigid chains investigated, the scaling law for partitioning approaches that of the rigid rods. We advocate presenting results based both on the reduced and absolute plots for drawing the correct conclusions. On increasing concentration, it is apparent that the differences in partitioning resulting from variable chain rigidity appear only in the dilute solution. At higher concentrations the differences vanish. The weak‐to‐strong penetration transition on an increase of concentration is explained using the scaling approach by the change of the mobility unit from the coil dimension to a concentration correlation length, similarly to that of flexible chains. The microscopic picture of partitioning represented by various concentration profiles in the slit leads to the conclusion that stiffer chains are able to fill the depletion layer at the walls more readily.  相似文献   

9.
We use molecular dynamics to study the kinetics of surface enrichment (SE) in a stable homogeneous mixture (AB), placed in contact with a surface which preferentially attracts A. The SE profiles show a characteristic double-exponential behavior with two length scales: ξ(-), which rapidly saturates to its equilibrium value, and ξ(+), which diverges as a power-law with time (ξ(+)~t(θ)). We find that hydrodynamic effects result in a crossover of the growth exponent from θ?0.5 to θ?1.0. There is also a corresponding crossover in the growth dynamics of the SE layer thickness.  相似文献   

10.
The behavior of semiflexible chains modeling wormlike polymers such as DNA and actin in confined spaces was explored by coarse-grained Monte Carlo simulations. The persistence length P, mean end-to-end distance R2, mean radius of gyration Rg2, and the size ratio R2/Rg2 were computed for chains in slits, cylinders, and spheres. It was found that the intrinsic persistence length of a free chain undergoes on confinement substantial alteration into the apparent persistence length. The qualitative differences were found in trends of the apparent persistence lengths between slits and cylinders on one side and spheres on the other side. The quantities P, R2, Rg2, and R2/Rg2 display similar dependences upon squeezing the chains in nanopores. The above quantities change nonmonotonically with confinement in slits and cylinders, whereas they drop smoothly with decreasing radius of a sphere. For elongation of a chain in a cylinder, two regimes corresponding to strong and moderate confinements were found and compared to experiments and predictions of the blob and Odijk theories. In a spherical cavity, the toroidal chain structure with a hole in the center was detected under strong confinements. The scattering form factor S(q) computed for semiflexible confined chains revealed three regimes of behavior in a slit and a cylinder that matched up well with the scaling theory. The complex form of the function S(q) computed for a sphere was interpreted as a sign of the toroidal structure. A reasonable agreement was found between the simulations and measurements of DNA and actin filaments, confined in nano- and microfluidic channels and spherical droplets, pertaining to the changes of the persistence lengths, chain elongation, and toroidal structure formation.  相似文献   

11.
12.
The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately using the preaveraging of the Oseen tensor. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times approximately t(2) (instead of approximately t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is approximately t. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest lived being approximately t(-3/2) in the Rouse limit and t(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular, an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments.  相似文献   

13.
We investigate unforced and forced translocation of a Rouse polymer (in the absence of hydrodynamic interactions) through a silicon nitride nanopore by three-dimensional Langevin dynamics simulations, as a function of pore dimensions and applied voltage. Our nanopore model consists of an atomistically detailed nanopore constructed using the crystal structure of β-Si(3)N(4). We also use realistic parameters in our simulation models rather than traditional dimensionless quantities. When the polymer length is much larger than the pore length, we find the translocation time versus chain length scales as τ ~ N(2+ν) for the unforced case and as τ ~ N((1+2ν)/(1+ν)) for the forced case. Our results agree with theoretical predictions which indicate that memory effects and tension on the polymer chain play an important role during the translocation process. We also find that the scaling exponents are highly dependent on the applied voltage (force). When the length of the polymer is on the order of the length of the pore, we do not find a continuous scaling law, but rather scaling exponents that increase as the length of the polymer increases. Finally, we investigate the scaling behavior of translocation time versus applied voltage for different polymer and pore lengths. For long pores, we obtain the theoretical scaling law of τ ~ 1/V(α), where α ? 1 for all voltages and polymer lengths. For short pores, we find that α decreases for very large voltages and/or small polymer lengths, indicating that the value of α = 1 is not universal. The results of our simulations are discussed in the context of experimental measurements made under different conditions and with differing pore geometries.  相似文献   

14.
By Monte Carlo simulations of a variant of the bond-fluctuation model without topological constraints, we examine the center-of-mass (COM) dynamics of polymer melts in d = 3 dimensions. Our analysis focuses on the COM displacement correlation function C(N)(t)≈?(t) (2)h(N)(t)/2, measuring the curvature of the COM mean-square displacement h(N)(t). We demonstrate that C(N)(t) ≈ -(R(N)∕T(N))(2)(ρ?/ρ)?f(x = t/T(N)) with N being the chain length (16 ≤ N ≤ 8192), R(N) ~ N(1/2) is the typical chain size, T(N) ~ N(2) is the longest chain relaxation time, ρ is the monomer density, ρ(*)≈N/R(N) (d) is the self-density, and f(x) is a universal function decaying asymptotically as f(x) ~ x(-ω) with ω = (d + 2) × α, where α = 1/4 for x ? 1 and α = 1/2 for x ? 1. We argue that the algebraic decay NC(N)(t) ~ -t(-5/4) for t ? T(N) results from an interplay of chain connectivity and melt incompressibility giving rise to the correlated motion of chains and subchains.  相似文献   

15.
In order to study rheological properties of gelling systems in dilute solution, we investigate the viscosity and the normal stresses in the Zimm model [B. H. Zimm, J. Chem. Phys. 24, 269 (1956)]. for randomly cross-linked monomers. The distribution of cluster topologies and sizes is assumed to be given either by Erdos-Renyi random graphs or three-dimensional bond percolation. Within this model the critical behavior of the viscosity and of the first normal stress coefficient is determined by the power-law scaling of their averages over clusters of a given size n with n. We investigate these scaling relations numerically and conclude that the scaling exponents are independent of the hydrodynamic interaction strength. The numerically determined exponents agree well with experimental data for branched polymers. However, we show that this traditional model of polymer physics is not able to yield a critical divergence at the gel point of the viscosity for a polydisperse dilute solution of gelation clusters. A generally accepted scaling relation for the Zimm exponent of the viscosity is thereby disproved.  相似文献   

16.
We investigate the dependence of F-actin microrheology on probe surface chemistry using diffusing wave spectroscopy. Polystyrene probe particles exhibit subdiffusive mean-squared displacements, where Deltar(2)(t) approximately t(0.77)(+/-)(0.03) consistent with previous experiments and theory. However, polystyrene probes preadsorbed with bovine serum albumin (BSA) interact weakly with the surrounding polymer network and exhibit a scaling exponent similar to pure diffusion Deltar(2)(t) approximately t, which decreases as particle size and actin concentration increases. Using models of particle diffusion in locally heterogeneous viscoelastic microenvironments, we find that the microrheological response of BSA-treated particles is consistent with the formation of a polymer-depleted shell surrounding the probes. The shell thickness scales with particle size but not polymer concentration. These results suggest that the depletion is caused by exclusion or orientation of actin filaments near probes due to their long length and rigidity.  相似文献   

17.
We consider the dynamics of phase separation in lipid bilayer membranes, modeled as flat two-dimensional liquid sheets within a bulk fluid, both in the creeping flow approximation. We present scaling arguments that suggest asymptotic coarsening in these systems is characterized by a length scale R(t) ~ t(1/2) for critical (bicontinuous) phase separation and R(t) ~t(1/3) for off-critical concentrations (droplet morphology). In this limit, the bulk fluid is the primary source of dissipation. We also address these questions with continuum stochastic hydrodynamic simulations. We see evidence of scaling violation in critical phase separation, where isolated circular domains coarsen slower than elongated ones. However, we also find a region of apparent scaling where R(t) ~ t(1/2) is observed. This appears to be due to the competition of thermal and hydrodynamic effects. We argue that the diversity of scaling exponents measured in experiment and prior simulations can in part be attributed to certain measurements lying outside the asymptotic long-length-scale regime, and provide a framework to help understand these results. We also discuss a few simple generalizations to confined membranes and membranes in which inertia is relevant.  相似文献   

18.
End-growth/evaporation kinetics in living polymer systems with "association-ready" free unimers (no initiator) is considered theoretically. The study is focused on the systems with long chains (typical aggregation number N ? 1) at long times. A closed system of continuous equations is derived and is applied to study the kinetics of the chain length distribution (CLD) following a jump of a parameter (T-jump) inducing a change of the equilibrium mean chain length from N(0) to N. The continuous approach is asymptotically exact for t ? t(1), where t(1) is the dimer dissociation time. It yields a number of essentially new analytical results concerning the CLD kinetics in some representative regimes. In particular, we obtained the asymptotically exact CLD response (for N ? 1) to a weak T-jump (ε = N(0)∕N - 1 ? 1). For arbitrary T-jumps we found that the longest relaxation time t(max?) = 1∕γ is always quadratic in N (γ is the relaxation rate of the slowest normal mode). More precisely t(max?)∝4N(2) for N(0) < 2N and t(max?)∝NN(0)∕(1 - N∕N(0)) for N(0) > 2N. The mean chain length N(n) is shown to change significantly during the intermediate slow relaxation stage t(1) ? t ? t(max?). We predict that N(n)(t)-N(n)(0)∝√t in the intermediate regime for weak (or moderate) T-jumps. For a deep T-quench inducing strong increase of the equilibrium N(n) (N ? N(0) ? 1), the mean chain length follows a similar law, N(n)(t)∝√t, while an opposite T-jump (inducing chain shortening, N(0) ? N ? 1) leads to a power-law decrease of N(n): N(n)(t)∝t(-1∕3). It is also shown that a living polymer system gets strongly polydisperse in the latter regime, the maximum polydispersity index r = N(w)∕N(n) being r? ≈ 0.77N(0)∕N ? 1. The concentration of free unimers relaxes mainly during the fast process with the characteristic time t(f) ~ t(1)N(0)∕N(2). A nonexponential CLD dominated by short chains develops as a result of the fast stage in the case of N(0) = 1 and N ? 1. The obtained analytical results are supported, in part, by comparison with numerical results found both previously and in the present paper.  相似文献   

19.
The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions among polymer monomers are focused. Extensive simulations show that the dependence of diffusion coefficient D on the polymer concentration c agrees with Phillies equation D-exp (-αcδ) with a scaling exponent δ≈0.97 which coincides with the experimental one in literature. For increasing nanoparticle size, the scaling prefactor α increases monotonically while the scaling exponent always keeps fixed. Moreover, we also study the diffusion of nanoparticle without hydrodynamic interactions and find that mobility of the nanoparticle slows down, and the scaling exponent is obviously different from the one in experiments, implying that hydrodynamic interactions play a crucial role in the diffusion of a nanoparticle in semidilute polymer solutions.  相似文献   

20.
This paper addresses the kinetic behavior of random walks in fractal media. We perform extensive numerical simulations of both single and annihilating random walkers on several Sierpinski carpets, in order to study the time behavior of three observables: the average number of distinct sites visited by a single walker, the mean-square displacement from the origin, and the density of annihilating random walkers. We found that the time behavior of those observables is given by a power law modulated by soft logarithmic-periodic oscillations. We conjecture that logarithmic-periodic oscillations are a manifestation of a time domain discrete scale iNvariance (DSI) that occurs as a consequence of the spatial DSI of the substrate. Our conjecture implies that the logarithmic periods of oscillations in space and time domains are linked by a dynamic exponent z, through z=log(tau)/log(b(1)), where tau and b(1) are the fundamental scaling ratios of the DSI symmetry in the time and space domains, respectively. We use this relationship in order to compute z for different observables and fractals. Furthermore, we check the values obtained with independent measurements provided by the power-law behavior of the mean-square displacement with time [R(2)(t) proportional variant t(2/z)]. The very good agreement obtained between both computations of the z exponent gives strong support to the idea of an intimate interplay between spatial and time symmetry properties that we expect will have a quite general scope. We expect that the application of the outlined concepts in the field of dynamic processes in fractal media will stimulate further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号