首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To gain a complete understanding of a chemical reaction, it is necessary to determine the structural changes that occur to the reacting molecules during the reaction. Chemists have long dreamed of being able to determine the molecular structure changes that occur during a chemical reaction, including the structures of transition states (TSs). The use of ultrafast spectroscopy to gain a detailed knowledge of chemical reactions (including their TSs) promises to be a revolutionary way to increase reaction efficiencies and enhance the reaction products, which is difficult to do using conventional methods that are based on trial and error. To confirm the molecular structures of TSs predicted by theoretical analysis, chemists have long desired to directly observe the TSs of chemical reactions. Direct observations have been realized by ultrafast spectroscopy using ultrashort laser pulses. Our group has been able to stably generate visible to near‐infrared sub‐5‐fs laser pulses using a noncollinear optical parametric amplifier (NOPA). We used these sub‐5‐fs pulses to study reaction processes (including their TSs) by detecting structural changes. We determine reaction mechanisms by observing the TSs in a chemical reaction and by performing density‐functional theory calculations. DOI 10.1002/tcr.201000018  相似文献   

2.
Time-resolved transient absorption spectroscopy with sub-9 fs ultrashort laser pulses in the deep-ultraviolet (DUV) region is reported for the first time. Single 8.7 fs DUV pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. Electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of thymine over the full spectral range using a 128-channel lock-in detector. Vibrational modes of the electronic ground state and excited states can be observed as well as the decay dynamics of the electronic excited state. Information on the initial phase of the vibrational modes is extracted from the measured difference absorbance trace, which contains oscillatory structures arising from the vibrational modes of the molecule. Along with other techniques such as time-resolved infrared spectroscopy, spectroscopy with sub-9 fs DUV pulses is expected to contribute to a detailed understanding of the photochemical dynamics of biologically significant molecules that absorb in the DUV region such as DNA and amino acids.  相似文献   

3.
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.  相似文献   

4.
High resolution laser induced fluorescence, spectra of IrN in the spectral region between 394 and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. Two Ω=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.  相似文献   

5.
We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm(-1) frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of beta-carotene. Following optical excitation to S(2) (1B(u) (+)) the molecule relaxes in 160 fs to S(1) (2A(g) (-)) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S(1) C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states.  相似文献   

6.
In the present work, ideas for controlling photochemical reactions in dissipative environments using shaped laser pulses are presented. New time-local control algorithms for the stochastic Schro?dinger equation are introduced and compared to their reduced density matrix analog. The numerical schemes rely on time-dependent targets for guiding the reaction along a preferred path. The methods are tested on the vibrational control of adsorbates at metallic surfaces and on the ultrafast electron dynamics in a strong dissipative medium. The selective excitation of the specific states is achieved with improved yield when using the new algorithms. Both methods exhibit similar convergence behavior and results compare well with those obtained using local optimal control for the reduced density matrix. The favorable scaling of the methods allows to tackle larger systems and to control photochemical reactions in dissipative media of molecules with many more degrees of freedom.  相似文献   

7.
The ring-cleavage reactions of a series of benzocycloalkenes were studied using an ArF excimer laser. Product formation was significantly suppressed in the presence of nitrogen; therefore, the presence of vibrationally excited states (hot molecules), as intermediates, was indicated. The product of highly strained benzocyclobutene was linearly proportional to the laser fluence, whereas those of benzocyclopentene and benzocyclohexene were proportional to the square of the laser fluence in the presence of nitrogen. These phenomena cannot be understood as photochemical bond cleavage in the electronic excited state, but instead appear to be the result of single- and two-photon reactions of hot molecules. The dissociation rate constants were evaluated by a statistical rate theory under the assumption that the reaction occurred from the hot molecule. The reaction rate of highly strained benzocyclobutene was predicted to be faster than the collisional rate with foreign gas, even if it had vibrational energy equivalent to one photon; however, the reaction rates of less strained benzocyclohexene were expected to compete with the collisional rate when the vibrational energy was equivalent to two photons. Benzocyclopentene was an intermediate case and showed both single- and two-photon reactions. The dissociation rate constant of 1.4 x 10(6) s(-1) was successfully obtained from benzocyclopentene under collision-free conditions. This value was in fair agreement with the calculated value. The different dissociation rate constants of the molecules were well-explained in terms of the strain energy. Although the strain energy varies in a wide range (10-130 kJ mol(-1)), the simple model of the calculations reproduced the observed values of the CH2-CH2 bond dissociation in strained benzocycloalkenes.  相似文献   

8.
We present an investigation into hydrogen bonding dynamics and kinetics in water using femtosecond infrared spectroscopy of the OH stretching vibration of HOD in D(2)O. Infrared vibrational echo peak shift and polarization-selective pump-probe experiments were performed with mid-IR pulses short enough to capture all relevant dynamical processes. The experiments are self-consistently analyzed with a nonlinear response function expressed in terms of three dynamical parameters for the OH stretching vibration: the frequency correlation function, the lifetime, and the second Legendre polynomial dipole reorientation correlation function. It also accounts for vibrational-relaxation-induced excitation of intermolecular motion that appears as heating. The long time, picosecond behavior is consistent with previous work, but new dynamics are revealed on the sub-200 fs time scale. The frequency correlation function is characterized by a 50 fs decay and 180 fs beat associated with underdamped intermolecular vibrations of hydrogen bonding partners prior to 1.4 ps exponential relaxation. The reorientational correlation function observes a 50 fs librational decay prior to 3 ps diffusive reorientation. Both of these correlation functions compare favorably with the predictions from classical molecular dynamics simulations. The time-dependent behavior can be separated into short and long time scales by the 340 fs correlation time for OH frequency shifts. The fast time scales arise from dynamics that are mainly local: fluctuations in hydrogen bond distances and angles within relatively fixed intermolecular configurations. On time scales longer than the correlation time, dephasing and reorientations reflect collective reorganization of the liquid structure. Since the OH transition frequency and dipole are only weakly sensitive to these collective coordinates, this is a kinetic regime which gives an effective rate for exchange of intermolecular structures.  相似文献   

9.
It is experimentally challenging to directly obtain structural information of the transition state (TS), the high-energy bottleneck en route from reactants to products, for solution-phase reactions. Here, we use single-molecule experiments as well as high-level quantum chemical calculations to probe the TS of disulfide bond reduction, a bimolecular nucleophilic substitution (S N2) reaction. We use an atomic force microscope in force-clamp mode to apply mechanical forces to a protein disulfide bond and obtain force-dependent rate constants of the disulfide bond reduction initiated by a variety of nucleophiles. We measure distances to the TS or bond elongation (Delta x), along a 1-D reaction coordinate imposed by mechanical force, of 0.31 +/- 0.05 and 0.44 +/- 0.03 A for thiol-initiated and phosphine-initiated disulfide bond reductions, respectively. These results are in agreement with quantum chemical calculations, which show that the disulfide bond at the TS is longer in phosphine-initiated reduction than in thiol-initiated reduction. We also investigate the effect of solvent environment on the TS geometry by incorporating glycerol into the aqueous solution. In this case, the Delta x value for the phosphine-initiated reduction is decreased to 0.28 +/- 0.04 A whereas it remains unchanged for thiol-initiated reduction, providing a direct test of theoretical calculations of the role of solvent molecules in the reduction TS of an S N2 reaction. These results demonstrate that single-molecule force spectroscopy represents a novel experimental tool to study mechanochemistry and directly probe the sub-?ngstr?m changes in TS structure of solution-phase reactions. Furthermore, this single-molecule method opens new doors to gain molecular level understanding of chemical reactivity when combined with quantum chemical calculations.  相似文献   

10.
Pump-probe spectroscopy was performed with a few cycle pulses of 6.7 fs duration. The electronic transition intensity modulation was induced by molecular vibration in a quinoid thiophene molecule in solution. The real-time vibrational features were analyzed in terms of dependence of vibrational amplitude and phase on probe photon energy. The electronic transition probability is modulated by molecular vibration via vibronic coupling. Changes in the spectral shape and intensity of the time-resolved spectrum were studied by tracking characteristic spectral features including the peak frequency and intensity, spectral bandwidth, and band-integrated intensity. From the analysis the modulation mechanisms were classified into two groups: (1) Condon type and (2) non-Condon type. The features of the wave packet motions were also classified into zeroth-order derivatives due to quasi-pure non-Condon type and first- and second-order derivative types due to the displacement of the potential minimum and the potential curvature change associated with the relevant vibronic transition, respectively.  相似文献   

11.
We present a generalization of the reaction coordinate driven method to find reaction paths and transition states for complicated chemical processes, especially enzymatic reactions. The method is based on the definition of a subset of chemical coordinates; it is simple, robust, and suitable to calculate one or more alternative pathways, intermediate minima, and transition-state geometries. Though the results are approximate and the computational cost is relatively high, the method works for large systems, where others often fail. It also works when a certain reaction path competes with others having a lower energy barrier. Accordingly, the procedure is appropriate to test hypothetical reaction mechanisms for complicated systems and provides good initial guesses for more accurate methods. We present tests on a number of simple reactions and on several complicated chemical transformations and compare the results with those obtained by other methods. Calculation of the reaction path for the enzymatic hydrolysis of the substrate by dUTPase for an active-site model with 85 atoms, including several loosely bound water molecules, indicates that the method is feasible for the study of enzyme mechanisms.  相似文献   

12.
We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with <100 fs temporal and <35 cm(-1) spectral resolution. The key technical change that facilitates this advance is the use of a tunable narrow-bandwidth optical parametric amplifier (NB-OPA) presented recently by Shim et al. (Shim, S.; Mathies, R. A. Appl. Phys. Lett. 2006, 89, 121124). The practicality of tunable FSRS is demonstrated by examining the photophysical dynamics of beta-carotene. Using 560 nm Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.  相似文献   

13.
Most molecular and supramolecular organic photochemical reactions involve paramagnetic reactive intermediates (such as molecular triplet states, triplet radical pairs, and free radicals). In a number of cases these species are created with "anomalous" spin populations which are far from thermal equilibrium. Such paramagnetic species are said to be "spin polarized" and may be observed directly by time-resolved electron paramagnetic resonance (TREPR). The TREPR technique can be applied to exploit spin polarization, which, in addition to providing an enormous signal to noise enhancement, also reveals the mechanisms involved in photochemical reactions. TREPR spectroscopy provides a means of tracking the reaction of radicals with molecules and the nonreactive interactions of radicals with other radicals in real time. The latter interactions provide a systematic investigation of supramolecular interactions of geminate radicals in micelles.  相似文献   

14.
Intramolecular processes in electronic-excited states of 2,4,5-triarylimidazole molecules were studied by femtosecond laser spectroscopy. Experiments were carried out with two types of compounds, namely, those experiencing intramolecular proton transfer and two model compounds in which it is impossible. Schemes of the processes studied were proposed and the characteristic rate constants were determined. The excited-state intramolecular proton transfer (ESIPT) in the molecules with planar structure of the reaction center is a very fast process (100 fs). If the reaction center has a nonplanar structure and, hence, the intramolecular hydrogen bond is weakened, the ESIPT time is determined by the time of conformational rearrangement of the molecule.  相似文献   

15.
Photoexcited molecules are quintessential reactants in photochemistry. Structures of these photoexcited molecules in disordered media in which a majority of photochemical reactions take place remained elusive for decades owing to a lack of suitable X-ray sources, despite their importance in understanding fundamental aspects in photochemistry. As new pulsed X-ray sources become available, short-lived excited-state molecular structures in disordered media can now be captured by using laser-pulse pump, X-ray pulse-probe techniques of third-generation synchrotron sources with time resolutions of 30-100 ps, as demonstrated by examples in this review. These studies provide unprecedented information on structural origins of molecular properties in the excited states. By using other ultrafast X-ray facilities that will be completed in the near future, time-resolution for the excited-state structure measurements should reach the femtosecond time scales, which will make "molecular movies" of bond breaking or formation, and vibrational relaxation, a reality.  相似文献   

16.
Time-resolved studies using 100 fs laser pulses generate CN radicals photolytically in solution and probe their subsequent reaction with solvent molecules by monitoring both radical loss and product formation. The experiments follow the CN reactants by transient electronic spectroscopy at 400 nm and monitor the HCN products by transient vibrational spectroscopy near 3.07 microm. The observation that CN disappears more slowly than HCN appears shows that the two processes are decoupled kinetically and suggests that the CN radicals rapidly form two different types of complexes that have different reactivities. Electronic structure calculations find two bound complexes between CN and a typical solvent molecule (CH(2)Cl(2)) that are consistent with this picture. The more weakly bound complex is linear with CN bound to an H atom through the N atom, and the more strongly bound complex has a structure in which the CN bridges Cl and H atoms of the solvent. Fitting the transient absorption data with a kinetic model containing two uncoupled complexes reproduces the data for seven different chlorinated alkane solvents and yields rate constants for the reaction of each type of complex. Depending on the solvent, the linear complex reacts between 2.5 and 12 times faster than the bridging complex and is the primary source of the HCN reaction product. Increasing the Cl atom content of the solvents decreases the reaction rate for both complexes.  相似文献   

17.
The excited-state proton transfer of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid was studied by time-resolved laser-induced fluorescence spectroscopy with ultra-short laser pulses. The excited-state reactions were identified in aqueous media as a function of the pH value. Apart from the well-known inversion of the ordinary dissociation properties of these compounds, new species were found which exist only in the excited-state resulting from a temporal and reversible annihilation of the aromatic bond system. These species and their reaction mechanisms were detected by their absorption and fluorescence spectra.  相似文献   

18.
Theoretical concepts of molecular photonics are presented. Features of the photophysical processes in molecular systems and the relationship between their probability and the electronic structures of the molecules are discussed. Possible mechanisms for the photochemical decomposition of electron-excited molecular systems with chemical bond cleavage are considered. The effect adiabatic photochemical reactions have on the probability of nonradiative conversion processes is shown. Dependences of spectral luminescence properties, the photochemical and radiation chemical stability of the molecular systems, and the efficiency of molecules of photostabilizers of polymers on their structure are interpreted. Areas of application are indicated for molecular photonics.  相似文献   

19.
Time-dependent Schr?dinger equation, TDSE, simulations have been performed in order to prepare and study via MPIPS the evolution of vibrational wave packets on the ion pair electronic state potentials B'B1Sigma(u)(+) and Hh1Sigma(g)(+) of the H2 molecule. Using ab initio potential surfaces and transition moments, we present two- and three-photon excitation schemes with ultrashort pulses (tau 相似文献   

20.
Bimolecular chemical reaction control of gaseous CO and H(2) at room temperature and atmospheric pressure, without any catalyst, using shaped femtosecond laser pulses is presented. High intensity laser radiation applied to a reaction cell facilitates non-resonant bond breakage and the formation of a range of ions, which can then react to form new products. Stable reaction products are measured after irradiation of a reaction cell, using time of flight mass spectroscopy. Bond formation of C-O, C-C, and C-H bonds is demonstrated as CO(2)(+), C(2)H(2)(+), CH(+), and CH(3)(+) were observed in the time of flight mass spectrum of the product gas, analyzed after irradiation. The formation of CO(2) is shown to be dependent on laser intensity, irradiation time, and on the presence of H(2) in the reaction cell. Using negatively chirped laser pulses more C-O bond formation takes place as compared to more C-C bond formation for unchirped pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号