首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemistry of the HC(O)CO radical, produced in the oxidation of glyoxal, has been studied under conditions relevant to the lower atmosphere using an environmental chamber/Fourier Transform infrared spectrometric system. The chemistry of HC(O)CO was studied over the range 224–317 K at 700 Torr total pressure and was found to be governed by competition between unimolecular decomposition [to HCO and CO, reaction (5)] and reaction with O2 [to form HO2 and 2CO, reaction (6a), or HC(O)C(O)O2, reaction (6b)]. The rate coefficient for decomposition relative to that of reaction with O2 increases with increasing temperature. Assuming a value for k6 of 10−11 cm3 molecule−1 s−1, the following expression for the unimolecular decomposition is obtained at 700 Torr, k5 = 1.4+9/−1.1 × 1012 exp(−3160 ± 500/T). The rate coefficients for reactions (6a) and (6b) are about equal, with no strong dependence on temperature. The reaction of HC(O)C(O)O2 with NO2 was also studied. Final product analysis was consistent with the formation of HCO, CO2, and NO3 as the major products in this reaction; no evidence for the PAN‐type species, HC(O)C(O)O2NO2, was found even at the lowest temperature studied (224 K). The UV‐visible absorption spectrum of glyoxal is also reported; results are in substantive agreement with previous studies. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 149–156, 2001  相似文献   

2.
Rate coefficients, k1(T), over the temperature range of 210-390 K are reported for the gas-phase reaction OH + HC(O)C(O)H (glyoxal) --> products at pressures between 45 and 300 Torr (He, N2). Rate coefficients were determined under pseudo-first-order conditions in OH using pulsed laser photolysis production of OH radicals coupled with OH detection by laser-induced fluorescence. The rate coefficients obtained were independent of pressure and bath gas. The room-temperature rate coefficient, k1(296 K), was determined to be (9.15 +/- 0.8) x 10-12 cm3 molecule-1 s-1. k1(T) shows a negative temperature dependence with a slight deviation from Arrhenius behavior that is reproduced over the temperature range included in this study by k1(T) = [(6.6 +/- 0.6) x 10-18]T2[exp([820 +/- 30]/T)] cm3 molecule-1 s-1. For atmospheric modeling purposes, a fit to an Arrhenius expression over the temperature range included in this study that is most relevant to the atmosphere, 210-296 K, yields k1(T) = (2.8 +/- 0.7) x 10-12 exp[(340 +/- 50)/T] cm3 molecule-1 s-1 and reproduces the rate coefficient data very well. The quoted uncertainties in k1(T) are at the 95% confidence level (2sigma) and include estimated systematic errors. Comparison of the present results with the single previous determination of k1(296 K) and a discussion of the reaction mechanism and non-Arrhenius temperature dependence are presented.  相似文献   

3.
4.
《Chemical physics letters》2006,417(1-3):154-158
Recent studies have shown that the reaction between acetyl radicals and O2 at low pressures leads to the direct fast formation of OH radical, but the nature of co-products is controversial. Laser photolysis coupled to TDLAS (10–200 Torr, 298 K) has been employed to directly monitor two possible co-products of this reaction, CO and formaldehyde. Only CH2O has been detected in yield of 0.29 ± 0.13, but with time constants much slow than the OH formation under these conditions; the observed CH2O-time profiles are compatible with the known mechanism of peroxyacetyl secondary reactions.  相似文献   

5.
6.
运用准经典轨线方法, 基于Peterson从头计算势能面对O+HCl→OH+Cl反应的立体动力学性质进行了研究. 讨论了在31.77和51.04 kJ/mol两种碰撞能情况下极化依赖的微分反应截面(2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt)和(2π/σ)(dσ21-/dωt)以及描述k-j′两矢量相关和k-k′-j′三矢量相关的分布函数P(θr)和P(φr). 计算得到的P(θr)分布表明, 产物分子的转动角动量j′具有强烈的取向分布, 并且产物转动角动量的取向效应对散射能的变化比较敏感. 而P(φr)的分布表明, 产物分子虽然具有沿着y轴的取向效应, 但是没有明显的定向效应.  相似文献   

7.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

8.
Atmospheric pressure rate coefficients for the loss of HO2, CH3O2, and C2H5O2 radicals to the wall of a ¼″ Teflon tube have been measured. In dry air, they are 2.8 ± 0.2 s−1 for HO2 and 0.8 ± 0.1 s−1 for both CH3O2 and C2H5O2 radicals. The rate coefficient for HO2 loss increases markedly with the relative humidity of the air; however, the organic radicals show no such dependence. These data are used in a kinetic model of the radical amplifier chemistry to investigate the reported sensitivity to water concentration. The increased wall loss accounts for only some of the observed water dependence, suggesting there is an unreported water contribution to the gas phase chemistry. Including the reaction of the HO2/water adduct with NO to yield HNO3 or HOONO into the mechanism is shown to provide a better simulation of the observed water dependence of the radical detector. This reaction would also be important in atmospheric chemistry as it provides an additional loss mechanism for both radicals and NOx. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 145–152, 1999  相似文献   

9.
The mechanism of the reaction between OH radicals and CO is discussed in relation to recent experiments which indicate that the rate constant, k = ?(dln[OH]/dt)/[CO], depends on total pressure. It is shown that this observation is quite consistent with the known spectroscopic and thermodynamic properties of the HOCO radical, as long as the dissociation of HOCO to H + CO2 is no faster than that to OH + CO.  相似文献   

10.
Hydrogen abstraction from methylene chloride by the.OH radical in aqueous solution is monitored by direct observation of the.CHCl2 radical absorption build-up at 220 nm, yielding a bimolecular rate constant of /5.8±0.2/xlo7 M–1s–1 at room temperature. A spectral band extending from 220 nm to 330 nm is assigned to the dichloromethyl radical.  相似文献   

11.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
A theoretical study of the mechanism and kinetics of the OH hydrogen abstraction from glyoxal and methylglyoxal is presented. Optimum geometries, frequencies, and gradients have been computed at the BHandHLYP/6-311++G(d,p) level of theory for all the stationary points, as well as for 12 additional points along the minimum energy path (MEP). Energies were obtained by single-point calculations at the above geometries using CCSD(T)/ 6-311++G(d,p) to produce the potential energy surface. The rate coefficients were calculated for the temperature range 200-500 K by using canonical variational theory (CVT) with small-curvature tunneling (SCT) corrections. Our analysis suggests a stepwise mechanism, which involves the formation of a reactant complex. The overall agreement between the calculated and experimental kinetic data is very good. This agreement supports the reliability of the Arrhenius parameters of the glyoxal + OH reaction that are proposed in this work for the first time. The Arrhenius expressions that best describe the studied reactions are k1 = (9.63 +/- 0.23) x l0(-13)exp[(517 +/- 7)/T] and k2 = (3.93 +/- 0.11) x 10(-13)exp[(1060 +/- 8)/T]cm3 molecule(-1)s(-1) for glyoxal and methylglyoxal, respectively.  相似文献   

13.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

14.
15.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

16.
The Cl atom-initiated oxidation of CH2Cl2 and CH3Cl was studied using the FTIR method in the photolysis of mixtures typically containing Cl2 and the chlorinated methanes at 1 torr each in 700 torr air. The results obtained from product analysis were in general agreement with those reported by Sanhueza and Heicklen. The relative rate constant for the Cl atom reactions of CH2Cl2 and CH3Cl was determined to be k(Cl +CH3Cl)/k(Cl + CH2Cl2) = 1.31 ± 0.14 (2σ) at 298 ± 2 K.  相似文献   

17.
The kinetics and abstraction rate coefficients of hydroxyl radical (OH) reaction with pinonaldehyde were computed using G3(MP2) theory and transition-state theory (TST) between 200 and 400 K. Structures of the reactants, reaction complexes (RCs), product complexes (PCs), transition states (TSs), and products were optimized at the MP2(FULL)/6-31G* level of theory. Fifteen transition states were identified for the title reaction and confirmed by intrinsic reaction coordinate (IRC) calculations. The contributions of all the individual hydrogens in the substrate molecule to the total reaction are computed. The quantum mechanical tunneling effect was computed using Wigner's and Eckart's methods (both symmetrical and unsymmetrical methods). The reaction exhibits a negative temperature dependent rate coefficient, k(T) = (1.97 ± 0.34) × 10(-13) exp[(1587 ± 48)/T] cm(3) molecule(-1) s(-1), k(T) = (3.02 ± 0.56) × 10(-13) exp[(1534 ± 52/T] cm(3) molecule(-1) s(-1), and k(T) = (4.71 ± 1.85) × 10(-14) exp[(2042 ± 110)/T] cm(3) molecule(-1) s(-1) with Wigner's, Eckart's symmetrical, and Eckart's unsymmetrical tunneling corrections, respectively. Theoretically calculated rate coefficients are found to be in good agreement with the experimentally measured ones and other theoretical results. It is shown that hydrogen abstraction from -CHO position is the major channel, whereas H-abstraction from -COCH(3) is negligible. The atmospheric lifetime of pinonaldehyde is computed to be few hours and found to be in excellent agreement with the experimentally estimated ones.  相似文献   

18.
Formic acid and formylperoxy radical have been identified by Fourier transform infrared spectroscopy in the photo-oxidation of H2CO and H213CO in solid O2 and 18O2. The mechanistic implication of this observation to gas phase oxidation reactions are discussed.  相似文献   

19.
Co3O4 nanorods were successfully synthesized from a single precursor via a thermal decomposition and oxidization route. The precursor used was Co(CO3)0.35Cl0.20(OH)1.10, which was prepared by a hydrothermal reaction using CoCl2⋅6H2O with CO(NH2)2 at 95–120 °C. Both the precursor and the as-prepared Co3O4 were characterized with XRD, TEM, SEM, TGA and XPS. The precursor, as well as Co3O4, was found to be composed of nanorods that were radially bunched. The Co3O4 nanorods obtained through a thermal treatment at 300 °C for 5 h were found to have a porous structure.  相似文献   

20.
The reaction of propionyl radical with oxygen has been studied using the full coupled cluster theory with the complete basis set. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for this important reaction in detail. The reaction takes place via a chemical activation mechanism. The barrierless association of propionyl with oxygen produces the propionylperoxy radical, which decomposes to form the hydroxyl radical and the three-center alpha-lactone predominantly or the four-center beta-propiolactone. The oxidation of propionyl radical to carbon monoxide or carbon dioxide is not straightforward rather via the secondary decomposition of alpha-lactone and beta-propiolactone. Kinetically, the overall rate constant is almost pressure independent and it approaches the high-pressure limit around tens of torr of helium. At temperatures below 600 K, the rate constant shows negative temperature dependence. The experimental yields of the hydroxyl radical can be well reproduced, with the average energy transferred per collision -DeltaE=20-25 cm(-1) at 213 and 295 K (helium bath gas). At low pressures, together with the hydroxy radical, alpha-lactone is the major product, while beta-propiolactone only accounts for about one-fifth of alpha-lactone. At the high-pressure limit, the production of the propionylperoxy radical is dominant together with a fraction of the isomers. The infrared spectroscopy or the mass spectroscopy techniques are suggested to be employed in the future experimental study of the C2H5CO+O2 reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号