首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the Hirota’s method, the multiple-pole solutions of the focusing Schrödinger equation are derived directly by introducing some new ingenious limit methods. We have carefully investigated these multi-pole solutions from three perspectives: rigorous mathematical expressions, vivid images, and asymptotic behavior. Moreover, there are two kinds of interactions between multiple-pole solutions: when two multiple-pole solutions have different velocities, they will collide for a short time; when two multiple-pole solutions have very close velocities, a long time coupling will occur. The last important point is that this method of obtaining multiple-pole solutions can also be used to derive the degeneration of N-breather solutions. The method mentioned in this paper can be extended to the derivative Schrödinger equation, Sine-Gorden equation, mKdV equation and so on.  相似文献   

2.
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.  相似文献   

3.
New Exact Solitary Wave Solutions of the KS Equation   总被引:7,自引:0,他引:7  
Two methods are described for obtaining newexact solitary wave solutions of the KS equation.Because these two methods are essentially equivalent theresults obtained here are the same.  相似文献   

4.
We apply the Simple Equations Method (SEsM) for obtaining exact travelling-wave solutions of the extended fifth-order Korteweg-de Vries (KdV) equation. We present the solution of this equation as a composite function of two functions of two independent variables. The two composing functions are constructed as finite series of the solutions of two simple equations. For our convenience, we express these solutions by special functions V, which are solutions of appropriate ordinary differential equations, containing polynomial non-linearity. Various specific cases of the use of the special functions V are presented depending on the highest degrees of the polynomials of the used simple equations. We choose the simple equations used for this study to be ordinary differential equations of first order. Based on this choice, we obtain various travelling-wave solutions of the studied equation based on the solutions of appropriate ordinary differential equations, such as the Bernoulli equation, the Abel equation of first kind, the Riccati equation, the extended tanh-function equation and the linear equation.  相似文献   

5.
The aim of this paper is to generate exact travelling wave solutions of the Harry-Dym equation through the methods of Adomian decomposition, He's variational iteration, direct integration, and power series. We show that the two later methods are more successful than the two former to obtain more solutions of the equation.  相似文献   

6.
We present the nonlinear Schrödinger (NLS) equation of fractional order. The fractional derivatives are described in the Caputo sense. The Adomian decomposition method (ADM) in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution constructed in power series with easily computable components.  相似文献   

7.
非线性波方程求解的新方法   总被引:30,自引:0,他引:30       下载免费PDF全文
从Legendre椭圆积分和Jacobi椭圆函数的定义出发,得到了新的变换,并把它用于非线性演化方程的求解.用三个具体的例子,如非线性Klein-Gordon方程、Boussinesq方程和耦合的mKdV方程组,说明了具体的求解步骤.比较方便地得到非线性演化方程或方程组的新解析解,如周期解、孤子解等. 关键词: Jacobi椭圆函数 非线性方程 周期解 孤子解  相似文献   

8.
两个非线性发展方程的双向孤波解与孤子解   总被引:1,自引:0,他引:1       下载免费PDF全文
徐桂琼  李志斌 《物理学报》2003,52(8):1848-1857
采用分步确定拟解的原则, 对齐次平衡法求非线性发展方程孤子解的关键步骤作了进一步改 进. 以广义Boussinesq方程和bidirectional Kaup-Kupershmidt方程为应用实例, 说明使用 该方法可有效避免“中间表达式膨胀”的问题, 除获得标准Hirota形式的孤子解外, 还能获 得其他形式的孤子解. 关键词: 齐次平衡法 孤子解 孤波解 广义Boussinesq方程 bidirectional Kaup-Kupershmi dt方程  相似文献   

9.
Many practical models in interdisciplinary fields can be described with the help of fractional-order nonlinear partial differential equations(NPDEs). Fractional-order NPDEs such as the space-time fractional Fokas equation, the space-time Kaup–Kupershmidt equation and the space-time fractional (2+1)-dimensional breaking soliton equation have been widely applied in many branches of science and engineering. So, finding exact traveling wave solutions are very helpful in the theories and numerical studies of such equations. More precisely, fractional sub-equation method together with the proposed technique is implemented to obtain exact traveling wave solutions of such physical models involving Jumarie’s modified Riemann–Liouville derivative. As a result, some new exact traveling wave solutions for them are successfully established. Also, (1+1)-dimensional plots and 1-dimensional plots of some of the derived solutions are given to visualize the dynamics of the considered NPDEs. The obtained results reveal that the proposed technique is quite effective and convenient for obtaining exact solutions of NPDEs with fractional-order.  相似文献   

10.
In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin-Bona-Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method.  相似文献   

11.
In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin-Bona-Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method.  相似文献   

12.
This paper studies chirped optical solitons in nonlinear optical fibers. However, we obtain diverse soliton solutions and new chirped bright and dark solitons, trigonometric function solutions and rational solutions by adopting two formal integration methods. The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method. These results are more general compared to Hadi et al(2018 Optik 172 545–53) and Yakada et al(2019 Optik197 163108).  相似文献   

13.
A new nonlinear three-wave equation of the sixth order for pressure in a polydisperse gas-liquid mixture with bubbles of two sizes is obtained, and its stationary solutions are analyzed. The equation includes two nonlinear quadratic terms of different derivative orders. These terms are of fundamental importance for obtaining good correspondence between the solutions to this equation and the experimentally observed solitary waves in the form of two coupled solitons.  相似文献   

14.
Two very efficient methods for obtaining approximate solutions to nonlinear acoustics equations are discussed. I proposed these methods earlier, but they are still little known. The first method is based on expanding an unknown function into a Taylor series with respect to the coordinate (evolution variable) and on approximate summation of the terms of this series in all orders up to the infinite order. This series can be summed completely only in particular cases, e.g., for a simple wave. It has been noted that the partial summation technique is implemented more easily if all the terms of the series are represented as corresponding topological diagrams. The second method is based on introducing a “nonlinear” phase delay (proportional to the wave amplitude) for the temporal variable in linear solutions of the problem. The application technique of these methods is illustrated by obtaining approximate solutions of the Burgers equation.  相似文献   

15.
The goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear partial differential equations and to show that several well-known methods for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show that the Hirota method is connected to a particular case of SEsM for a specific form of the function from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials. Then we show that a particular case of SEsM can be used in order to reproduce the methodology of the inverse scattering transform method for the case of the Burgers equation and Korteweg-de Vries equation. This particular case is connected to use of a specific case of Step 2 of SEsM. This step is connected to: (i) representation of the solution of the solved nonlinear partial differential equation as expansion as power series containing powers of a “small” parameter ϵ; (ii) solving the differential equations arising from this representation by means of Fourier series, and (iii) transition from the obtained solution for small values of ϵ to solution for arbitrary finite values of ϵ. Finally, we show that the much-used homogeneous balance method, extended homogeneous balance method, auxiliary equation method, Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method and first integral method are connected to particular cases of SEsM.  相似文献   

16.
We use the tanh method and a variable separated ODE method for solving the double sine-Gordon equation and a generalized form of this equation. Several exact travelling wave solutions are formally derived. The two methods provide distinct solutions of different physical structures.  相似文献   

17.
We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics (amongst other areas). In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions (in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature). The resulting boundary value problem is solved on the real line subject to conditions at z → ±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods (designed for initial and boundary value problems, respectively) and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence (which is governed by a power-law parameter m) on oscillations of the travelling wave solutions.  相似文献   

18.
In this article, two split-step finite difference methods for Schrödinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrödingerlike equation in time. (ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization. (iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.  相似文献   

19.
In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the exp(-φ(ε))-expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.  相似文献   

20.
In this paper, sub equation and expansion methods are proposed to construct exact solutions of a nonlinear longitudinal wave equation (LWE) in a magneto-electro-elastic circular rod. The proposed methods have been used to construct hyperbolic, rational, dark soliton and trigonometric solutions of the LWE in the magneto-electro-elastic circular rod. Arbitrary values are given to the parameters in the solutions obtained. 3D, 2D and contour graphs are presented with the help of a computer package program. Solutions attained by symbolic calculations revealed that these methods are effective, reliable and simple mathematical tool for finding solutions of nonlinear evolution equations arising in physics and nonlinear dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号