首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the new agegraphic dark energy model in the framework of Brans-Dicke theory, which is a natural extension of the Einstein's general relativity. In this framework the form of the new agegraphic dark energy density takes as ρq =3n2 φ(t) η-2, where η is the conformalage of the universe and φ(t) is the Brans-Dicke scalar field representing the inverse of the time-variable Newton's constant. We derive the equation of state of the new agegraphic dark energy and the deceleration parameter of the universe in the Brans-Dicke theory. It is very interesting to find that in the Brans-Dicke theory the agegraphic dark energy realizes quintom-like behavior,i.e., its equation of state crosses the phantom divide w=-1 duringthe evolution. We also compare the situation of the agegraphic darkenergy model in the Brans-Dicke theory with that in the Einstein'stheory. In addition, we discuss the new agegraphic dark energy modelwith interaction in the framework of the Brans-Dicke theory.  相似文献   

2.
The principle of invariance of the c-number symmetric bracket is used to derive both the quantum operator commutator relation and the time-dependent Schrödinger equation. A c-number dynamical equation is found, which leads to the second quantized field theory of bosons and fermions.  相似文献   

3.
In this paper we unravel the connection between the quantum mechanical formalism and the Central limit theorem (CLT). We proceed to connect the results coming from this theorem with the derivations of the Schrödinger equation from the Liouville equation, presented by ourselves in other papers. In those papers we had used the concept of an infinitesimal parameter x that raised some controversy. The status of this infinitesimal parameter is then elucidated in the framework of the CLT. Finally, we use the formal apparatus developed in our previous papers and the results of the present one to advance an alternative objective interpretation of quantum mechanics in which its relations with the classical framework are made explicit. The relations between our approach and those using the Wigner–Moyal transformation are also addressed.  相似文献   

4.
Using the canonical quantum theory apply to spherically symmetric pure gravitational systems, we present the study of the closed Friedmann-Robertson-Walker (FRW) cosmological model filled with pressureless matter (dust) content as a toy model. The Wheeler-DeWitt equation is view as the Schrödinger equation for the linear harmonic oscillator with energy E. We show that such type of universe has a quantized masses of the order of the Planck mass and harmonic oscillator wave functions, where a dual symmetry emerge among the quantum parameters.  相似文献   

5.
The Hamiltonian counterpart of classical Lagrangian field theory is covariant Hamiltonian field theory where momenta correspond to derivatives of fields with respect to all world coordinates. In particular, classical Lagrangian and covariant Hamiltonian field theories are equivalent in the case of a hyperregular Lagrangian, and they are quasi-equivalent if a Lagrangian is almost-regular. In order to quantize covariant Hamiltonian field theory, one usually attempts to construct and quantize a multisymplectic generalization of the Poisson bracket. In the present work, the path integral quantization of covariant Hamiltonian field theory is suggested. We use the fact that a covariant Hamiltonian field system is equivalent to a certain Lagrangian system on a phase space which is quantized in the framework of perturbative quantum field theory. We show that, in the case of almost-regular quadratic Lagrangians, path integral quantizations of associated Lagrangian and Hamiltonian field systems are equivalent.  相似文献   

6.
We consider quantum geometrodynamics and parametrized quantum field theories in the framework of the Bohm-de Broglie interpretation. In the first case, and following the lines of our previous work [1], where a hamiltonian formalism for the bohmian trajectories was constructed, we show the consistency of the theory for any quantum potential, completing the scenarios for canonical quantum cosmology presented there. In the latter case, we prove the consistency of scalar field theory in Minkowski spacetime for any quantum potential, and we show, using this alternative hamiltonian method, a concrete example where Lorentz invariance of individual events is broken.  相似文献   

7.
We argue that the complex numbers are an irreducible object of quantum probability: this can be seen in the measurements of geometric phases that have no classical probabilistic analogue. Having the complex phases as primitive ingredient implies that we need to accept nonadditive probabilities. This has the desirable consequence of removing constraints of standard theorems about the possibility of describing quantum theory with commutative variables. Motivated by the formalism of consistent histories and keeping an analogy with the theory of stochastic processes, we develop a (statistical) theory of quantum processes: they are characterized by the introduction of a density matrix on phase space paths (it thus includes phase information) and fully reproduces quantum mechanical predictions. We can write quantum differential equations (in analogy to Langevin equation) that could be interpreted as referring to individual quantum systems. We describe the reconstruction theorem by which a quantum process can yield the standard Hilbert space structure if the Markov property is imposed. We discuss the relevance of our results for the interpretation of quantum theory (a sample space is possible if probabilities are nonadditive) and quantum gravity (the Hilbert space arises here after the consideration of a background causal structure).  相似文献   

8.
We study the correlation statistics of phonon radiations in a weakly driven optomechanical system. Three dominated scattering processes are identified by the scattering theory analytically and the master equation numerically, whose interplay determines the phonon statistical properties. Our results show that for the large detuning, the driving field off-resonant with the system induces a small emission rate of two anti-bunched phonons. For the resonant driving field, there is a relatively large emission rate of two bunched phonons.  相似文献   

9.
We consider the Maxwell equations for an electromagnetic field propagating in a solid with a three-dimensional superlattice of quantum dots linked by strong tunneling along one axis, where electrons with different spin projections are affected by the strong Coulomb repulsion at a single site. We obtain a phenomenological equation in the form of the classical 1+1-dimensional sine-Gordon equation. Electrons are considered within the framework of quantum formalism taking into account the changes in the dispersion law provided by the presence of Coulomb interactions. The phenomenological equation is solved numerically, and the influence of Coulomb repulsion and the degree of band population on the propagation of ultra-short optical pulses is analyzed.  相似文献   

10.
A BV algebra is a formal framework within which the BV quantization algorithm is implemented. In addition to the gauge symmetry, encoded in the BV master equation, the master action often exhibits further global symmetries, which may be in turn gauged. We show how to carry this out in a BV algebraic set up. Depending on the nature of the global symmetry, the gauging involves coupling to a pure ghost system with a varying amount of ghostly supersymmetry. Coupling to an N=0N=0 ghost system yields an ordinary gauge theory whose observables are appropriately classified by the invariant BV cohomology. Coupling to an N=1N=1 ghost system leads to a topological gauge field theory whose observables are classified by the equivariant BV cohomology. Coupling to higher NN ghost systems yields topological gauge field theories with higher topological symmetry. In the latter case, however, problems of a completely new kind emerge, which call for a revision of the standard BV algebraic framework.  相似文献   

11.
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein-Gordon equation and Dirac equation. We investigate the scalar field and φ4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.  相似文献   

12.
The de Broglie-Bohm causal theory of quantum mechanics is applied to the hydrogen atom in the fully spin-dependent and relativistic framework of the Dirac equation, and in the nonrelativistic but spin-dependent framework of the Pauli equation. Eigenstates are chosen which are simultaneous eigenstates of the energy H, total angular momentum M, and z component of the total angular momentum M z. We find the trajectories of the electron, and show that in these eigenstates, motion is circular about the z-axis, with constant angular velocity. We compute the rates of revolution for the ground (n=1) state and the n=2 states, and show that there is agreement in the relevant cases between the Dirac and Pauli results, and with earlier results on the Schrödinger equation.  相似文献   

13.
In the framework of causal perturbation theory we analyze the gauge structure of a massless self-interacting quantum tensor field. We look at this theory from a pure field theoretical point of view without assuming any geometrical aspect from general relativity. To first order in the perturbation expansion of the S-matrix we derive necessary and sufficient conditions for such a theory to be gauge invariant, by which we mean that the gauge variation of the self-coupling with respect to the gauge charge operator Q is a divergence in the sense of vector analysis. The most general trilinear self-coupling of the graviton field turns out to be the one derived from the Einstein–Hilbert action plus divergences and coboundaries.  相似文献   

14.
We present a stochastic theory for the nonequilibriurn dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action, which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle’s worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.  相似文献   

15.
16.
We study the field/antifield formulation of pure Yang Mills theory in the framework of the finite field dependent BRST transformation. We show that the generating functionals corresponding to different solutions of the quantum master equation are connected through the finite field dependent BRST transformations. We establish this result with the help of several explicit examples.  相似文献   

17.
It is commonly assumed that quantum field theory arises by applying ordinary quantum mechanics to the low energy effective degrees of freedom of a more fundamental theory defined at ultra-high-energy/short-wavelength scales. We shall argue here that, even for free quantum fields, there are holistic aspects of quantum field theory that cannot be properly understood in this manner. Specifically, the subtractions needed to define nonlinear polynomial functions of a free quantum field in curved spacetime are quite simple and natural from the quantum field theoretic point of view, but are at best extremely ad hoc and unnatural if viewed as independent renormalizations of individual modes of the field. We illustrate this point by contrasting the analysis of the Casimir effect, the renormalization of the stress-energy tensor in time-dependent spacetimes, and anomalies from the point of quantum field theory and from the point of view of quantum mechanics applied to the independent low energy modes of the field. Some implications for the cosmological constant problem are discussed.  相似文献   

18.
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.  相似文献   

19.
In discussing Bohr-Sommerfeld-like quantum rules for gravity, it is argued that Einstein's Riemannian theory of general relativity rather leads to a quantum field-mechanics than to a quantum-field theory of gravity. We construct the canonically conjugate coordinates and momenta of this gravito-dynamics in the framework of the Einstein-Cartan teleparallelism.  相似文献   

20.
For a FRW-spacetime coupled to an arbitrary real scalar field, we endow the solution space of the associated Wheeler-DeWitt equation with a Hilbert-space structure, construct the observables, and introduce the physical wave functions of the universe that admit a genuine probabilistic interpretation. We also discuss a proposal for the formulation of the dynamics. The approach to quantum cosmology outlined in this article is based on the results obtained within the theory of pseudo-Hermitian operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号