首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Song JM  Yeung ES 《Electrophoresis》2000,21(4):807-815
A simple base-calling scheme based on four-label multicolor detection is suggested for DNA sequencing. The entire spectra of the dye labels were used for identification. Specifically, the maxima of the emission spectra rather than the intensity ratios at selected wavelengths are used to provide excellent discrimination. Capillary gel electrophoresis was used for the separation of DNA fragments. Data acquisition and analysis compatible with fast and high-throughput imaging detection was accomplished. The accuracy of base calling of PGEM/U DNA from the raw data obtained with 5 nm and 7 nm spectroscopic resolution were 98.4% for 386 bases and 98.4% for 385 bases. Base calling of M13mp18 DNA showed 98.3% accuracy for 420 bases.  相似文献   

2.
Kotler L  He H  Miller AW  Karger BL 《Electrophoresis》2002,23(17):3062-3070
The goal of this work was to reduce the capillary electrophoresis (CE) separation time of DNA sequencing fragments with linear polyacrylamide solutions while maintaining the previously achieved long read lengths of 1000 bases. Separation speed can be increased while maintaining long read lengths by reducing the separation matrix viscosity and/or raising the column temperature. As urea is a major contributor to the separation buffer viscosity, reducing its concentration is desirable both for increase in the separation speed and easier solution replacement from the capillary. However, at urea concentrations below 6 M, the denaturing capacity of the separation buffer is not sufficient for accurate base-calling. To restore the denaturing properties of the buffer, a small amount of an organic solvent was added to the formulation. We found that a mixture of 2 M urea with 5% v/w of dimethyl sulfoxide (DMSO) resulted in 975 bases being sequenced at 70 degrees C in 40 min with 98.5% accuracy. To achieve this result, the software was modified to perform base-calling at a peak resolution as low as 0.24. It is also demonstrated that the products of thermal decomposition of urea had a deleterious effect on the separation performance at temperatures above 70 degrees C. With total replacement of urea with DMSO, at a concentration of 5% v/w in the same linear polyacrylamide (LPA)-containing buffer, it was possible to increase the column temperature up to 90 degrees C. At this temperature, up to 951 bases with 98.5% accuracy could be read in only 32 min of separation. However, with DMSO alone, some groups of C-terminated peaks remained compressed, and column temperature at this level cannot at present be utilized with existing commercial instrumentation.  相似文献   

3.
Shi Y 《Electrophoresis》2006,27(19):3703-3711
The ability of plastic microfluidic devices with separation channel lengths of 6, 10 or 18 cm to perform high-quality and high-performance ssDNA analysis was evaluated. Specifically, four-color DNA sequencing separation of a terminator sequencing standard using replaceable, urea-denaturing linear polyacrylamide (LPA) solution as a sieving matrix, yielded read lengths of 410 bases in 15 min with base calling accuracy of 99.2% on a 6-cm device, and 640 bases in 35 min with accuracy of 98.0% on a 18-cm device. A two-color sizing analysis of four-locus (CSF1PO, TPOX, TH01, vWA) short tandem repeats (STRs) allelic ladder on a 10-cm device indicated a mean SD of +/- 0.08 base pairs (bp) between runs, and single bp resolution of spiked TH01 allele 9.3 (198 bp) from TH01 allele 10 (199 bp) of the CTTv ladder with R = 0.81. A four-color multiplex sizing analysis of three different AmpFlSTR allelic ladders consisting of nine loci (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820) and gender alleles (Amelogenin) on a 10-cm device had a mean SD of +/- 0.15 bp between runs for sizing three loci, i.e., FGA, D18S51 and D3S818; alleles differing by 2 bp in size were resolved with resolutions close to baseline. This work demonstrates that plastic microfluidic devices are capable of quality sequencing and STR sizing comparable to that of glass devices of similar separation lengths.  相似文献   

4.
We present 50 cm long microchannels in a monolithic device for high resolution, long read-length DNA sequencing. These devices were fabricated and bonded in borofloat glass using unconventional photolithography techniques with 48-188 independent, straight microchannels. The microchannel DNA separation was tested with POP-6 polymer and a DNA sequencing ladder separated at room temperature and 200 V/cm. Single-base resolution greater than 600 bases was achieved and the sequence base called to 640 bases with 98% accuracy. Under the same experimental conditions, the performance of the microchip was identical to a fused-silica capillary with similar cross-sectional area.  相似文献   

5.
Shi Y  Anderson RC 《Electrophoresis》2003,24(19-20):3371-3377
Plastic microchannels (4.5 cm long) fabricated from an etched glass master were tested for high-resolution single-stranded DNA analysis. Using replaceable denaturing linear polyacrylamide as sieving matrix, one-color separation of a fragment sizing standard with single-base resolution (R > 0.5) was achieved up to 275 bases. Two-color sizing analysis of four loci short tandem repeat (STR) allelic ladder (CSF1PO, TPOX, TH01, vWA) with single-base resolution (R = 0.62) on TH01 alleles 9.3 (198 bp) and 10 (199 bp) was demonstrated. An average standard deviation of +/- 0.06 bp and +/-0.11 bp in sizing 32 alleles of the CTTv ladder was attained between runs and between channels, respectively. Four-color sequencing separation of a terminator sequencing standard showed a base-calling accuracy of 99.1% out to 320 bases in 13 min.  相似文献   

6.
A low cost, 0.75-mW helium neon laser, operating in the green region at 534.5 nm, is used to excite fluorescence from tetramethylrhodamine isothiocyanate-labelled DNA fragments that have been separated by capillary gel electrophoresis. The detection limit (3 sigma) for the dye is 500 ymol [1 yoctomole (1 ymol) = 10(-24) mol] or 300 analyte molecules in capillary zone electrophoresis; the detection limit for labeled primer separated by capillary gel electrophoresis is 2 zmol [1 zeptomole (1 zmol) = 10(-21) mol]. The Richardson-Tabor peak-height encoded sequencing technique is used to prepare DNA sequencing samples. In 6% T, 5% C acrylamide, 7 M urea gels, sequencing rates of 300 bases/hour are produced at an electric field strength of 200 V/cm; unfortunately, the data are plagued by compressions. These compressions are eliminated with addition of 20% formamide to the sequencing gel; the gel runs slowly and sequencing data are generated at a rate of about 70 bases/hour.  相似文献   

7.
Separation of single‐base substitution sequential DNA isomers remains one of the most challenging tasks in DNA separation by capillary electrophoresis. We developed a simple, versatile capillary electrophoresis technique for the separation of single‐base sequential isomers of DNA having the same chain length. This technique is based on charge differences resulting from the different protonation (acid dissociation) properties of the four DNA bases. A mixture of 13 single‐base sequential isomers of 12‐mer single‐stranded DNA was separated by using an electrophoretic buffer solution containing 20 mM phosphoric acid (pH 2.0) and 8 M urea. We demonstrated that our method could separate all possible mutation patterns under identical experimental conditions. In addition, application of our method to the separation of the polymerase chain reaction product of a 68‐mer gene fragment and its single‐base isomers indicates that in combination with the appropriate genomic DNA extraction techniques, the method can detect single‐base gene mutations.  相似文献   

8.
Voltammetric methods were used to probe the interaction of antimicrobial drug metronidazole (MTZ) with calf thymus DNA. Binding constants (K) and binding site sizes (s) were determined from the voltammetric data, i.e., shifts in potential and changes in limiting current with the addition of DNA. MTZ showed appreciable electrostatic binding to DNA in solution with K=2.2(+/- 1.3) x 10(4) M(-1) and s=0.34 bp. One reduction peak of MTZ at the bare glassy carbon electrode (GCE) split into two peaks at the DNA modified GCE (DNA/GCE). These changes in the cyclic voltammogram can only be due to the interaction of MTZ with the surface-confined DNA. In addition, the peak current of MTZ at the DNA/GCE was nearly 8-fold of the response at the bare GCE. The low detection limit of 2.0 x 10(-8) M made the DNA/GCE a promising biosensor for MTZ determination. And this method was successfully applied with high precision and accuracy compared with spectroscopic methods (relative error < 6%) for estimation of the total MTZ drug content in pharmaceutical dosage forms.  相似文献   

9.
Song L  Liang D  Fang D  Chu B 《Electrophoresis》2001,22(10):1987-1996
Poly(N,N-dimethylacrylamide) (PDMA) with a molecular mass of 5.2 x 10(6) g/mol has been synthesized and used in DNA sequencing analysis by capillary electrophoresis (CE). A systematic investigation is presented on the effects of different separation conditions, such as injection amount, capillary inner diameter, polymer concentration, effective separation length, electric field and temperature, on the resolution. DNA sequencing up to 800 bases with a resolution (R) limit of 0.5 (and 1,000 bases with a resolution limit of 0.3) and a migration time of 96 min was achieved by using 2.5% w/v polymer, 150 V/cm separation electric field, and 60 cm effective separation length at room temperature on a DNA sample prepared with FAM-labeled--21M13 forward primer on pGEM3Zf(+) and terminated with ddCTP. Ultrafast and fast DNA sequencing up to 420 and 590 bases (R > or = 0.5) were also achieved by using 3% w/v polymer and 40 cm effective separation length with a separation electric field of 525 and 300 V/cm, and a migration time of 12.5 and 31.5 min, respectively. PDMA has low viscosity, long shelf life and dynamic coating ability to the glass surface. The unique properties of PDMA make it a very good candidate as a separation medium for large-scale DNA sequencing by capillary array electrophoresis (CAE).  相似文献   

10.
Liu S 《Electrophoresis》2003,24(21):3755-3761
We have created a hybrid device of a microfabricated round-channel twin-T injector incorporated with a separation capillary in order to extend the straight separation distance for high speed and long readlength DNA sequencing. Semicircular grooves on glass wafers are obtained using a photomask with a narrow line-width and a standard isotropic photolithographic etching process. Round channels are made when two etched wafers are face-to-face aligned and bonded. A two-mask fabrication process has been developed to make channels of two different diameters. The twin-T injector is formed by the smaller channels whose diameter matches the bore of the separation capillary, and the "usual" separation channel, now called the connection channel, is formed by the larger ones whose diameter matches the outer diameter of the separation capillary. The separation capillary is inserted through the connection channel all the way to the twin-T injector to allow the capillary bore flush with the twin-T injector channels. The total dead-volume of the connection is estimated to be approximately 5 pL. To demonstrate the efficiency of this hybrid device, we have performed four-color DNA sequencing on it. Using a 200 microm twin-T injector coupled with a separation capillary of 20 cm effective separation distance, we have obtained readlengths of 800 plus bases at an accuracy of 98.5% in 56 min, compared to about 650 bases in 100 min on a conventional 40 cm long capillary sequencing machine under similar conditions. At an increased separation field strength and using a diluted sieving matrix, the separation time has been reduced to 20 min with a readlength of 700 bases at 98.5% base-calling accuracy.  相似文献   

11.
Griess GA  Hardies SC  Serwer P 《Electrophoresis》2005,26(23):4440-4448
A previous study shows that electrophoretic preconditioning of a commercial polymer solution increases the spacing and resolution of DNA fragments fractionated in this solution by CE at 50 degrees C (Griess, G. A. et al., Electrophoresis 2005, 26, 102). The present study shows that this preconditioning effect on peak spacing progressively increases when the temperature of preconditioning increases to 70 degrees C, though fractionation is still performed at 50 degrees C. An increase in peak sharpness accompanies the increase in peak separation for DNA fragments longer than 200 bases. Changing the preconditioning temperature from 50 to 70 degrees C optimally improves resolution of fragment analysis in the range of 600-2000 nucleotides. When DNA sequencing is performed with automated base calling and 70 degrees C preconditioning at 319 V/cm (47 cm long capillary, Applied Biosystems 310 apparatus), the range of high-quality base calls is increased by 25% to 750; the range of low-quality base calls is increased by about 100% to 1200 in comparison to DNA sequencing without preconditioning.  相似文献   

12.
Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.  相似文献   

13.
In DNA sequencing, single-stranded DNA fragments are separated by gel electrophoresis. This separation is based on a sieving mechanism where DNA fragments are retarded as they pass through pores in the gel. In this paper, we present the mobility of DNA sequencing fragments as a function of temperature; mobility is determined in 4% T LongRanger gels at an electric field of 300 V/cm. The temperature dependence is compared with the predictions of the biased reptation model. The model predicts that the fragment length for the onset of biased reptation with stretching increases with the square of temperature; the data show that the onset of biased reptation with stretching decreases with temperature. Biased reptation fails to model accurately the temperature dependence of mobility. We analyzed the data and extracted the activation energy for passage of sequencing fragments through the gel. For fragments containing less than ca. 200 bases, the activation energy increases linearly with the number of bases at a rate of 25 J/mol per base; for longer fragments, the activation energy increases at a rate of 6.5 J/mol per base. This transition in the activation energy presumably reflects a change in conformation of the DNA fragments; small fragments exist in a random coil configuration and larger fragments migrate in an elongated configuration.  相似文献   

14.
An integrated system for DNA sequencing based on a nanoreactor for cycle-sequencing reaction coupled with on-line capillary zone electrophoresis (CZE) for purification and capillary gel electrophoresis (CGE) for separation is presented. Less than 100 nl of premixed reagent solution, which includes dye-labeled terminator pre-mix, bovine serum albumin and template, was hydrodynamically injected into a fused-silica capillary (75 microm I.D.) inside a laboratory-made microthermocycler for cycle sequencing reaction. In the same capillary, the reaction products were purified by CZE followed by on-line injection of the DNA fragments into another capillary for CGE. Over 540 base pairs (bp) of DNA can be separated and the bases called for single-standed DNA with 0.9% error rate. The total time was about 3.5 h, or a cycle time of 2 h with staggered operation. For double-stranded DNA, a longer reaction time was required and base calling up to 490 bp with 1.2% error rate was achieved. The whole system is readily adaptable to automated multiplex operation for DNA sequencing or polymerase chain reaction analysis.  相似文献   

15.
The aim of the present study was the investigation of the effect of urea on analyte complexation in CD‐mediated separations of peptide enantiomers by CE in the pH range of about 2–5. pH‐independent complexation and mobility parameters in the absence and presence of 2 M urea were obtained by three‐dimensional, non‐linear curve fitting of the effective analyte mobility as a function of pH and heptakis‐(2,6‐di‐O‐methyl)‐β‐CD concentration. Urea led to decreased binding strength of the CD towards the protonated and neutral analyte enantiomers as well as to decreased mobilities of the free analytes. In contrast, mobilities of the fully protonated enantiomer–CD complexes as well as the pKa values of the free and complexed analytes increased. The effect of urea on separation efficiency varied with pH and CD concentration. In the case of Ala‐Tyr and Ala‐Phe, separations improved in the presence of urea at pH 2.2. In contrast, separations were impaired by urea at pH 3.8 and low concentrations of the CD. Decreased separation efficiency was noted for Asp‐PheOMe and Glu‐PheNH2 at low CD concentrations when urea was added but separations improved at higher CD concentrations over the entire pH range studied. The effect of urea on analyte complexation appeared to be primarily non‐stereoselective. Furthermore, the pH‐dependent reversal of the enantiomer migration order observed for Ala‐Tyr and Ala‐Phe can be rationalized by the complexation and mobility parameters.  相似文献   

16.
Wang Y  Liang D  Ying Q  Chu B 《Electrophoresis》2005,26(1):126-136
Quasi-interpenetrating network (IPN) formed by polyacrylamide and poly(N,N-dimethylacrylamide) was designed, synthesized, and tested as a high-performance DNA separation medium by capillary electrophoresis. The performance of quasi-IPN on DNA sequencing was determined by the acrylamide to dimethylacrylamide molar ratio, polyacrylamide molecular weight, and its size distribution. Under optimal operating conditions, quasi-IPN was able to achieve one-color DNA sequencing up to 1000 bases in 39 min, or 1200 bases in 60 min. Its performance was compared with some of the existing commercialized products, such as POP6 from Applied Biosystems and MegaBACE matrix from Amersham Biosciences. By using the ABI 310 Genetic Analyzer, even without optimized base-calling software, quasi-IPN yielded a read length of up to 700 bases of contiguous sequence (50-750 bases) in 35 min with 99.6% accuracy, or 750 bases of contiguous sequence (50-800 bases) in 37 min with 98.0% accuracy.  相似文献   

17.
Electrophoresis of human DNA fragments (approximately 1 x 10(5) to 1 x 10(7) bases in size) was conducted in a solution of uncross-linked polyacrylamide contained in a horizontally mounted 1 mm diameter glass tube and monitored by epifluorescence microscopy. In presence of the polymer, molecular conformations described as a "trailing network" of DNA and a globular "head" were observed. The migration velocity varies between species differing in the size of the "head", and in the ratio between the size of the "head" and that of the trailing "network". By contrast, in pure buffer, lambda phage DNA migrates in a globular form at a mobility consistent with known macroscopic data. When electrophoresis in the polymer solution of an agarose plug preparation of Schizosaccharomyces pombe DNA was carried out after melting at 70 degrees C, a migrating DNA-agarose complex was observed. The complex was not fully dissociated by an agarose-hydrolyzing enzyme (Gelase).  相似文献   

18.
Copolymers of acrylamide (AM) and N,N-dimethylacrylamide (DMA) with AM to DMA molar ratios of 3:1, 2:1 and 1:1 and molecular weights of about 2.2 MDa were synthesized. The polymers were tested as separation media in DNA sequencing analysis by capillary electrophoresis (CE). The dynamic coating ability of polydimethylacrylamide (PDMA) and the hydrophilicity of polyacrylamide (PAM) have been successfully combined in these random copolymers. A separation efficiency of over 10 million theoretical plates per meter has been reached by using the bare capillaries without the additional polymer coating step. Under optimized separation conditions for longer read length DNA sequencing, the separation ability of the copolymers decreased with decreasing AM to DMA molar ratio from 3:1, 2:1 and 1:1. In comparison with PAM, the copolymer with a 3:1 AM:DMA ratio showed a higher separation efficiency. By using a 2.5% w/v copolymer with 3:1 AM:DMA ratio, one base resolution of 0.55 up to 699 bases and 0.30 up to 963 bases have been achieved in about 80 min at ambient temperatures.  相似文献   

19.
《Analytical letters》2012,45(12):2453-2464
ABSTRACT

Methylene blue (MB) binds to the double helical DNA with a high affinity, as deduced from the absorption and fluorescence spectral data. Extensive hypochromism and red shifts in the absorption spectra were observed when MB binds to calf thymus DNA(CT DNA), which suggested the intercalation mechanism of MB into DNA bases. Upon binding to DNA, the fluorescence from MB was efficiently quenched by the DNA bases, with no shifts in the emission maximum. The large increases in the polarization upon binding to CT DNA supported the intercalation of MB into the helix. Ferrocyanide quenching studies showed that the magnitude of Ksv of the bound MB was lower than that of the free MB. The results of competitive binding studies showed that ethidium bromide could be displaced by MB from ethidium-DNA complex. The results of all above further studies also proved the intercalation of MB into DNA base stack.  相似文献   

20.
Sparsely cross-linked "nanogels" for microchannel DNA sequencing   总被引:1,自引:0,他引:1  
Doherty EA  Kan CW  Barron AE 《Electrophoresis》2003,24(24):4170-4180
We have developed sparsely cross-linked "nanogels", sub-colloidal polymer structures composed of covalently linked, linear polyacrylamide chains, as novel DNA sequencing matrices for capillary electrophoresis. The presence of covalent cross-links affords nanogel matrices with enhanced network stability relative to standard, linear polyacrylamide (LPA), improving the separation of large DNA fragments. Nanogels were synthesized via inverse emulsion (water-in-oil) copolymerization of acrylamide and N,N-methylenebisacrylamide (Bis). In order to retain the fluidity necessary in a replaceable polymer matrix for capillary array electrophoresis (CAE), a low percentage of the Bis cross-linker (< 10(-4) mol%) was used. Nanogels were characterized by multiangle laser light scattering and rheometry, and were tested for DNA sequencing by CAE with four-color laser-induced fluorescence (LIF) detection. The properties and performance of nanogel matrices were compared to those of a commercially available LPA network, which was matched for both weight-average molar mass (Mw) and extent of interchain entanglements (c/c*). Nanogels presented in this work have an average radius of gyration of 226 nm and a weight-average molar mass of 8.8 x 10(6) g/mol. At concentrations above the overlap threshold, nanogels form a clear, viscous solution, similar to the LPA matrix (Mw approximately 8.9 x 10(6) g/mol). The two matrices have similar flow and viscosity characteristics. However, because of the physical network stability provided by the internally cross-linked structure of the nanogels, a substantially longer read length ( approximately 63 bases, a 10.4% improvement) is obtained with the nanogel matrix at 98.5% accuracy of base-calling. The nanogel network provides higher-selectivity separation of ssDNA sequencing fragments longer than 375 bases. Moreover, nanogel matrices require 30% less polymer per unit volume than LPA. This is the first report of a sequencing matrix that provides better performance than LPA, in a side-by-side comparison of polymer matrices matched for Mw and extent of interchain entanglements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号